Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Temperament linked to onset of cancer and early death in female rats

23.10.2006
Study suggests looking at links in humans between behavior traits and cancer

Female rats that are apprehensive of new experiences as infants maintain that temperament and die earlier from mammary and pituitary tumors than do their more adventuresome sisters, according to new research by a team based at the University of Chicago.

The apprehensive rats were more likely to have irregular reproductive cycles than adventuresome rats, and that disruption could account for hormonal differences linked to the development of cancer earlier, the scholars found. There was no difference in the length of time between onset of cancer and death in the two set of rats, however, the scholars found.

Because the findings have identified a difference in temperament that is associated with the onset of cancer, the findings may have implications for research on the development of cancer in humans, said Martha McClintock, the David Lee Shillinglaw Distinguished Service Professor in Psychology at the University of Chicago, and a member of the team that reports its findings in the paper "Infant Temperament Predicts Life Span in Female Rats that Develop Spontaneous Tumors" in the current issue of Hormones and Behavior.

Current human studies on the relationship between cancer and personality primarily focus on survival once a tumor has been identified.

"Human studies may need to consider more basic behavior traits than those already considered," McClintock explained. By understanding the development of basic traits, researchers will be better equipped to link the connections between personality and cancer development, the team suggests.

The links between behavior traits and cancer in rats are striking, the scholars found.

"This is the first evidence that infant temperament among rats predicts the time at which these tumors appear and the age at which the females will die," said lead author Sonia Cavigelli, a former University researcher who is now Assistant Professor in Biobehavioral Health Pennsylvania State University. Jason Yee, a graduate student in the Department of Comparative Human Development at University of Chicago researcher, is also an author of the paper.

For their study, the researchers selected 81 female Sprague-Dawley rat pups. The breed is prone to development of breast and pituitary tumors. In order to minimize the differences in temperament that are accountable to differences between rat families, the researchers compared behavior among sisters.

The rats were tested at 20 days and 11 months of age in a cage to see how willing they were to explore a new environment, which contained non-threatening items such as toys. The researchers measured adventuresomeness by recording how far the rats wandered in the environment.

They found that by age 390 days, middle age for rats, 80 percent of the fearful rats had mammary cancer while only 38 percent of the adventuresome rats had the illness. The fearful rats had a life span of 573 days, versus 850 for the adventuresome rats. They found similar life span results for females with pituitary tumors.

The researchers also monitored ovarian cycles daily from the time the rats were 55 days old until they were 450 days old. In studying their ovarian cycles, the scholars found that during puberty, the fearful rats were twice as likely as the adventuresome rats to have irregular cycles (52 percent, versus 22 percent). The cycles stabilized after the rats reached adulthood, and then became differentiated again during middle age with the fearful rats having irregular cycles more often. The aging affects on reproduction were also accelerated in the fearful rats.

In an earlier study, University of Chicago researchers looked at the lifespan of male rats and found that the adventuresome males lived longer. Because the male rats died of a variety of diseases, they could not establish a reason for the differences. The new study links personality specifically with cancer.

William Harms | EurekAlert!
Further information:
http://www.uchicago.edu

Further reports about: Development adventuresome cycles difference temperament traits

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>