Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Temperament linked to onset of cancer and early death in female rats

23.10.2006
Study suggests looking at links in humans between behavior traits and cancer

Female rats that are apprehensive of new experiences as infants maintain that temperament and die earlier from mammary and pituitary tumors than do their more adventuresome sisters, according to new research by a team based at the University of Chicago.

The apprehensive rats were more likely to have irregular reproductive cycles than adventuresome rats, and that disruption could account for hormonal differences linked to the development of cancer earlier, the scholars found. There was no difference in the length of time between onset of cancer and death in the two set of rats, however, the scholars found.

Because the findings have identified a difference in temperament that is associated with the onset of cancer, the findings may have implications for research on the development of cancer in humans, said Martha McClintock, the David Lee Shillinglaw Distinguished Service Professor in Psychology at the University of Chicago, and a member of the team that reports its findings in the paper "Infant Temperament Predicts Life Span in Female Rats that Develop Spontaneous Tumors" in the current issue of Hormones and Behavior.

Current human studies on the relationship between cancer and personality primarily focus on survival once a tumor has been identified.

"Human studies may need to consider more basic behavior traits than those already considered," McClintock explained. By understanding the development of basic traits, researchers will be better equipped to link the connections between personality and cancer development, the team suggests.

The links between behavior traits and cancer in rats are striking, the scholars found.

"This is the first evidence that infant temperament among rats predicts the time at which these tumors appear and the age at which the females will die," said lead author Sonia Cavigelli, a former University researcher who is now Assistant Professor in Biobehavioral Health Pennsylvania State University. Jason Yee, a graduate student in the Department of Comparative Human Development at University of Chicago researcher, is also an author of the paper.

For their study, the researchers selected 81 female Sprague-Dawley rat pups. The breed is prone to development of breast and pituitary tumors. In order to minimize the differences in temperament that are accountable to differences between rat families, the researchers compared behavior among sisters.

The rats were tested at 20 days and 11 months of age in a cage to see how willing they were to explore a new environment, which contained non-threatening items such as toys. The researchers measured adventuresomeness by recording how far the rats wandered in the environment.

They found that by age 390 days, middle age for rats, 80 percent of the fearful rats had mammary cancer while only 38 percent of the adventuresome rats had the illness. The fearful rats had a life span of 573 days, versus 850 for the adventuresome rats. They found similar life span results for females with pituitary tumors.

The researchers also monitored ovarian cycles daily from the time the rats were 55 days old until they were 450 days old. In studying their ovarian cycles, the scholars found that during puberty, the fearful rats were twice as likely as the adventuresome rats to have irregular cycles (52 percent, versus 22 percent). The cycles stabilized after the rats reached adulthood, and then became differentiated again during middle age with the fearful rats having irregular cycles more often. The aging affects on reproduction were also accelerated in the fearful rats.

In an earlier study, University of Chicago researchers looked at the lifespan of male rats and found that the adventuresome males lived longer. Because the male rats died of a variety of diseases, they could not establish a reason for the differences. The new study links personality specifically with cancer.

William Harms | EurekAlert!
Further information:
http://www.uchicago.edu

Further reports about: Development adventuresome cycles difference temperament traits

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>