Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Temperament linked to onset of cancer and early death in female rats

23.10.2006
Study suggests looking at links in humans between behavior traits and cancer

Female rats that are apprehensive of new experiences as infants maintain that temperament and die earlier from mammary and pituitary tumors than do their more adventuresome sisters, according to new research by a team based at the University of Chicago.

The apprehensive rats were more likely to have irregular reproductive cycles than adventuresome rats, and that disruption could account for hormonal differences linked to the development of cancer earlier, the scholars found. There was no difference in the length of time between onset of cancer and death in the two set of rats, however, the scholars found.

Because the findings have identified a difference in temperament that is associated with the onset of cancer, the findings may have implications for research on the development of cancer in humans, said Martha McClintock, the David Lee Shillinglaw Distinguished Service Professor in Psychology at the University of Chicago, and a member of the team that reports its findings in the paper "Infant Temperament Predicts Life Span in Female Rats that Develop Spontaneous Tumors" in the current issue of Hormones and Behavior.

Current human studies on the relationship between cancer and personality primarily focus on survival once a tumor has been identified.

"Human studies may need to consider more basic behavior traits than those already considered," McClintock explained. By understanding the development of basic traits, researchers will be better equipped to link the connections between personality and cancer development, the team suggests.

The links between behavior traits and cancer in rats are striking, the scholars found.

"This is the first evidence that infant temperament among rats predicts the time at which these tumors appear and the age at which the females will die," said lead author Sonia Cavigelli, a former University researcher who is now Assistant Professor in Biobehavioral Health Pennsylvania State University. Jason Yee, a graduate student in the Department of Comparative Human Development at University of Chicago researcher, is also an author of the paper.

For their study, the researchers selected 81 female Sprague-Dawley rat pups. The breed is prone to development of breast and pituitary tumors. In order to minimize the differences in temperament that are accountable to differences between rat families, the researchers compared behavior among sisters.

The rats were tested at 20 days and 11 months of age in a cage to see how willing they were to explore a new environment, which contained non-threatening items such as toys. The researchers measured adventuresomeness by recording how far the rats wandered in the environment.

They found that by age 390 days, middle age for rats, 80 percent of the fearful rats had mammary cancer while only 38 percent of the adventuresome rats had the illness. The fearful rats had a life span of 573 days, versus 850 for the adventuresome rats. They found similar life span results for females with pituitary tumors.

The researchers also monitored ovarian cycles daily from the time the rats were 55 days old until they were 450 days old. In studying their ovarian cycles, the scholars found that during puberty, the fearful rats were twice as likely as the adventuresome rats to have irregular cycles (52 percent, versus 22 percent). The cycles stabilized after the rats reached adulthood, and then became differentiated again during middle age with the fearful rats having irregular cycles more often. The aging affects on reproduction were also accelerated in the fearful rats.

In an earlier study, University of Chicago researchers looked at the lifespan of male rats and found that the adventuresome males lived longer. Because the male rats died of a variety of diseases, they could not establish a reason for the differences. The new study links personality specifically with cancer.

William Harms | EurekAlert!
Further information:
http://www.uchicago.edu

Further reports about: Development adventuresome cycles difference temperament traits

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>