Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Critical hearing gene helps send auditory messages to brain

23.10.2006
By studying a gene earlier linked to deafness in humans, researchers now have new insight into the molecular process by which components of the inner ear send messages to the brain. The team reports its findings in the October 20, 2006, issue of the journal Cell, published by Cell Press.

The researchers found that mice lacking the gene otoferlin are profoundly deaf. The animals' deafness results from an inability to translate sound stimulation into the release of a chemical nerve messenger, or neurotransmitter, that would usually pass that information to auditory nerves and on to the brain, they reported. The sensory structures within the mutant animals' ears otherwise appeared to develop normally.

"Study of the genes responsible for deafness can bring new insight into the molecular basis of how hearing works," said Christine Petit of the Institut Pasteur in Paris, France.

The sensory machinery within the inner ear is particularly intriguing, she added, "in the sense that it operates with extreme temporal precision."

In mammals, the hearing organ, or cochlea, is a snail-shaped structure of the inner ear that is filled with a watery fluid. When that liquid moves in response to sound vibrations, thousands of sensory "hair" cells are set into motion.

Those sensory receptors come in two types: inner and outer hair cells. Outer hair cells amplify sound within the cochlea, allowing for hearing sensitivity. In contrast, inner hair cells are "the genuine sensory cells transmitting information on the temporal structure and intensity of sound to the central nervous system," Petit said.

While outer hair cell defects can lead to considerable hearing loss, she added, a loss of inner hair cell function results in total deafness as messages cannot get through.

Inner hair cells operate in a manner comparable to neurons, she said. When an inner hair cell is stimulated, channels open up allowing calcium to flow in. In turn, that influx of calcium leads small "sacs" full of neurotransmitter to fuse with the cell membrane, releasing their contents into the space, or synapse, between the sensory cells and auditory nerve endings.

That chemical release allows nerve messages to be passed from one neuron to another. In inner hair cells, those neurotransmitter-filled vesicles are held in place at the cell membrane by tethers known as "ribbons."

The current study follows up a report by Petit's team several years ago that people with a recessive form of deafness harbor two abnormal copies of the otoferlin gene. They also had some evidence hinting that the gene might act as a calcium sensor with an important role in neurotransmitter release by the inner hair cells. For example, otoferlin resembles a calcium-sensing protein involved in release of chemicals by sensory neurons elsewhere in the body. Their current study provides additional evidence to confirm that notion.

They now report that otoferlin activity in the cochlea occurs only in the inner hair cells, where it concentrates in the ribbon-associated synaptic vesicles. They also found that the otoferlin protein binds calcium and interacts with other proteins known to play a role in neurotransmitter release.

To further examine the gene's role in a living animal, the researchers studied "knockout" mice completely lacking a functional otoferlin gene. When exposed to sounds of various frequencies, the mice showed no detectable activity in parts of the brain that normally process sound.

They further found that the profoundly deaf mice suffered a complete loss of neurotransmitter release from their inner hair cells, despite having an apparently normal "ribbon synapse" and calcium flow.

The findings led the researchers to conclude that "otoferlin is essential for a late step of [neurotransmitter release] and may act as the major [calcium] sensor triggering membrane fusion at the inner hair cell ribbon synapse."

The findings also have therapeutic implications, as they suggest that people who are deaf as a result of defects in otoferlin "will benefit from cochlear implants," the researchers said. Cochlear implants analyze sound messages and convert them into electrical signals, bypassing the cochlea to directly stimulate the auditory nerves.

"That's good news," Petit said, since otoferlin-linked deafness is an auditory neuropathy, a class of hearing impairment for which the best course of treatment had remained uncertain.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

Further reports about: Calcium Cochlea Neurotransmitter Sensor auditory deafness hair hair cells otoferlin sensory

More articles from Life Sciences:

nachricht Maelstroms in the heart
22.02.2018 | Max-Planck-Institut für Dynamik und Selbstorganisation

nachricht Decoding the structure of the huntingtin protein
22.02.2018 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Decoding the structure of the huntingtin protein

22.02.2018 | Life Sciences

Camera technology in vehicles: Low-latency image data compression

22.02.2018 | Information Technology

Minimising risks of transplants

22.02.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>