Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Critical hearing gene helps send auditory messages to brain

23.10.2006
By studying a gene earlier linked to deafness in humans, researchers now have new insight into the molecular process by which components of the inner ear send messages to the brain. The team reports its findings in the October 20, 2006, issue of the journal Cell, published by Cell Press.

The researchers found that mice lacking the gene otoferlin are profoundly deaf. The animals' deafness results from an inability to translate sound stimulation into the release of a chemical nerve messenger, or neurotransmitter, that would usually pass that information to auditory nerves and on to the brain, they reported. The sensory structures within the mutant animals' ears otherwise appeared to develop normally.

"Study of the genes responsible for deafness can bring new insight into the molecular basis of how hearing works," said Christine Petit of the Institut Pasteur in Paris, France.

The sensory machinery within the inner ear is particularly intriguing, she added, "in the sense that it operates with extreme temporal precision."

In mammals, the hearing organ, or cochlea, is a snail-shaped structure of the inner ear that is filled with a watery fluid. When that liquid moves in response to sound vibrations, thousands of sensory "hair" cells are set into motion.

Those sensory receptors come in two types: inner and outer hair cells. Outer hair cells amplify sound within the cochlea, allowing for hearing sensitivity. In contrast, inner hair cells are "the genuine sensory cells transmitting information on the temporal structure and intensity of sound to the central nervous system," Petit said.

While outer hair cell defects can lead to considerable hearing loss, she added, a loss of inner hair cell function results in total deafness as messages cannot get through.

Inner hair cells operate in a manner comparable to neurons, she said. When an inner hair cell is stimulated, channels open up allowing calcium to flow in. In turn, that influx of calcium leads small "sacs" full of neurotransmitter to fuse with the cell membrane, releasing their contents into the space, or synapse, between the sensory cells and auditory nerve endings.

That chemical release allows nerve messages to be passed from one neuron to another. In inner hair cells, those neurotransmitter-filled vesicles are held in place at the cell membrane by tethers known as "ribbons."

The current study follows up a report by Petit's team several years ago that people with a recessive form of deafness harbor two abnormal copies of the otoferlin gene. They also had some evidence hinting that the gene might act as a calcium sensor with an important role in neurotransmitter release by the inner hair cells. For example, otoferlin resembles a calcium-sensing protein involved in release of chemicals by sensory neurons elsewhere in the body. Their current study provides additional evidence to confirm that notion.

They now report that otoferlin activity in the cochlea occurs only in the inner hair cells, where it concentrates in the ribbon-associated synaptic vesicles. They also found that the otoferlin protein binds calcium and interacts with other proteins known to play a role in neurotransmitter release.

To further examine the gene's role in a living animal, the researchers studied "knockout" mice completely lacking a functional otoferlin gene. When exposed to sounds of various frequencies, the mice showed no detectable activity in parts of the brain that normally process sound.

They further found that the profoundly deaf mice suffered a complete loss of neurotransmitter release from their inner hair cells, despite having an apparently normal "ribbon synapse" and calcium flow.

The findings led the researchers to conclude that "otoferlin is essential for a late step of [neurotransmitter release] and may act as the major [calcium] sensor triggering membrane fusion at the inner hair cell ribbon synapse."

The findings also have therapeutic implications, as they suggest that people who are deaf as a result of defects in otoferlin "will benefit from cochlear implants," the researchers said. Cochlear implants analyze sound messages and convert them into electrical signals, bypassing the cochlea to directly stimulate the auditory nerves.

"That's good news," Petit said, since otoferlin-linked deafness is an auditory neuropathy, a class of hearing impairment for which the best course of treatment had remained uncertain.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

Further reports about: Calcium Cochlea Neurotransmitter Sensor auditory deafness hair hair cells otoferlin sensory

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>