Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular mechanism provides intra-cellular traffic signal

20.10.2006
City planners could learn a lesson or two from tiny cells on how to maximize traffic flow.

Researchers at the University of Illinois at Chicago have found that intra-cellular trafficking is tightly coordinated for maximum flow through cellular compartments -- much as vehicles on a crowded road are allowed to pass quickly through a succession of green traffic lights.

The molecular mechanism that underlies this coordination is reported by lead researcher Nava Segev, UIC professor of biological sciences, in the November issue of Nature Cell Biology.

While the finding was made using yeast cells, intra-cellular mechanisms discovered in yeast almost invariably correspond to processes in mammalian cells, including humans, and the mechanism Segev described may find applicability in the biomedical field.

... more about:
»Golgi »Segev »TRAPP »Ypt »compartment »intra-cellular

"Every system in our body depends on intra-cellular trafficking, because anything that goes from the inside of a cell to the outside, or from outside to inside, uses this process," Segev said. "Malfunctioning of this pathway can cause a variety of human diseases. For example, problems in insulin secretion or presentation of insulin-receptors on the cell membrane result in diabetes. Defects in growth factor secretion and presentation of their receptors on cells result in cancer. Defects in neurotransmitter release or internalization result in brain disorders."

A special set of proteins is responsible for the coordination. Molecular switches that go by the letters Ypt allow membrane-enclosed vesicles to pass in and out of cellular compartments. Activator proteins flip the switches on. One activator protein, called TRAPP, coordinates two Ypt switches for quick entrance and subsequent exit from a central cellular compartment known as the Golgi apparatus.

"The Golgi is a central station in all cells, through which all intra-cellular traffic passes," Segev explained.

Specific subunits of TRAPP previously identified by the UIC researchers were found to be the key to coordinated switching and traffic flow through the Golgi. They have now shown that components of TRAPP act in sequence to direct the flow. One form of TRAPP turns on the first Ypt for entry into the Golgi, while at the other end of the Golgi, two subunits join TRAPP to activate the Ypt required for exit from the Golgi, Segev said.

Segev said the mechanism that her lab identified must now be shown to exist in mammalian cells. Her earlier discovery of the Ypt molecular switches in yeast and the subsequent finding of their homologues in mammalian cells, together with the fact that TRAPP is conserved in evolution from yeast to man, lead her to believe the entire coordinated switching mechanism is universal.

Paul Francuch | EurekAlert!
Further information:
http://www.uic.edu

Further reports about: Golgi Segev TRAPP Ypt compartment intra-cellular

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>