Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular mechanism provides intra-cellular traffic signal

20.10.2006
City planners could learn a lesson or two from tiny cells on how to maximize traffic flow.

Researchers at the University of Illinois at Chicago have found that intra-cellular trafficking is tightly coordinated for maximum flow through cellular compartments -- much as vehicles on a crowded road are allowed to pass quickly through a succession of green traffic lights.

The molecular mechanism that underlies this coordination is reported by lead researcher Nava Segev, UIC professor of biological sciences, in the November issue of Nature Cell Biology.

While the finding was made using yeast cells, intra-cellular mechanisms discovered in yeast almost invariably correspond to processes in mammalian cells, including humans, and the mechanism Segev described may find applicability in the biomedical field.

... more about:
»Golgi »Segev »TRAPP »Ypt »compartment »intra-cellular

"Every system in our body depends on intra-cellular trafficking, because anything that goes from the inside of a cell to the outside, or from outside to inside, uses this process," Segev said. "Malfunctioning of this pathway can cause a variety of human diseases. For example, problems in insulin secretion or presentation of insulin-receptors on the cell membrane result in diabetes. Defects in growth factor secretion and presentation of their receptors on cells result in cancer. Defects in neurotransmitter release or internalization result in brain disorders."

A special set of proteins is responsible for the coordination. Molecular switches that go by the letters Ypt allow membrane-enclosed vesicles to pass in and out of cellular compartments. Activator proteins flip the switches on. One activator protein, called TRAPP, coordinates two Ypt switches for quick entrance and subsequent exit from a central cellular compartment known as the Golgi apparatus.

"The Golgi is a central station in all cells, through which all intra-cellular traffic passes," Segev explained.

Specific subunits of TRAPP previously identified by the UIC researchers were found to be the key to coordinated switching and traffic flow through the Golgi. They have now shown that components of TRAPP act in sequence to direct the flow. One form of TRAPP turns on the first Ypt for entry into the Golgi, while at the other end of the Golgi, two subunits join TRAPP to activate the Ypt required for exit from the Golgi, Segev said.

Segev said the mechanism that her lab identified must now be shown to exist in mammalian cells. Her earlier discovery of the Ypt molecular switches in yeast and the subsequent finding of their homologues in mammalian cells, together with the fact that TRAPP is conserved in evolution from yeast to man, lead her to believe the entire coordinated switching mechanism is universal.

Paul Francuch | EurekAlert!
Further information:
http://www.uic.edu

Further reports about: Golgi Segev TRAPP Ypt compartment intra-cellular

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>