Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research links 'ecstasy' to survival of key movement-related cells in brain

20.10.2006
New research from the University of Cincinnati (UC) suggests that the widely abused club drug "ecstasy," or MDMA, can increase the survival of dopamine cells in the brain during fetal development.

Because these cells are critical in the regulation of voluntary movement, the findings, the researchers say, may lead to better therapies for neurological diseases like Parkinson's.

Led by Jack Lipton, PhD, professor of psychiatry, the study was presented today as an abstract at the Society for Neuroscience annual meeting in Atlanta.

"We're certainly not suggesting that this drug be used to treat diseases," said Lipton. "But finding new methods to enhance the survival of dopamine neurons is critical in developing new drugs for diseases such as Parkinson's.

... more about:
»Brain »Drug »MDMA »dopamine

"While MDMA itself isn't likely to be an appropriate therapy for neurodegenerative diseases, it may provide insights for developing new drugs that have similar properties.

"It's exciting to learn that an abused drug may have potential use for developing new therapeutics," he added. "It really makes you rethink your own preconceptions."

Dopamine is a neurotransmitter that has been found to regulate movement, balance, emotion and motivation, and it also affects pleasurable feelings in the brain. Researchers know that a loss of dopamine cells in the brain leads to the development of Parkinson's disease and possibly other movement disorders. Preventing dopamine cells from dying or aiding in the replacement of those cells is key to finding lasting therapies.

Lipton, director of the developmental neuroscience division in UC's psychiatry department, studies the long-term effects of abused drugs on the developing central nervous system. He noticed, during previous laboratory studies in rats, that prenatal exposure to MDMA increased growth of dopamine cells in the brain. His team then decided to study exposure to MDMA in cultured embryonic cells--where they confirmed that this drug was in fact increasing dopamine cell survival.

The findings, Lipton says, aren't consistent with what is known about adult brains, where MDMA has been shown to cause depletion of neurotransmitters--like dopamine--and has been linked to decreased brain activity.

MDMA, chemically known as methylenedioxymethamphetamine and sold and used illegally as "ecstasy," is a synthetic stimulant that prompts the secretion of large amounts of the neurotransmitters serotonin, dopamine and norepinephrine in the brain. This secretion can lead to prolonged periods of activity, hallucinations and euphoria. Before the United States banned it in 1985, MDMA was tested as a possible adjunct in psychotherapy. In 2001, the FDA agreed to allow MDMA to be tested as a possible treatment for post-traumatic stress disorder.

Dama Kimmon | EurekAlert!
Further information:
http://www.uc.edu

Further reports about: Brain Drug MDMA dopamine

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>