Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research links 'ecstasy' to survival of key movement-related cells in brain

20.10.2006
New research from the University of Cincinnati (UC) suggests that the widely abused club drug "ecstasy," or MDMA, can increase the survival of dopamine cells in the brain during fetal development.

Because these cells are critical in the regulation of voluntary movement, the findings, the researchers say, may lead to better therapies for neurological diseases like Parkinson's.

Led by Jack Lipton, PhD, professor of psychiatry, the study was presented today as an abstract at the Society for Neuroscience annual meeting in Atlanta.

"We're certainly not suggesting that this drug be used to treat diseases," said Lipton. "But finding new methods to enhance the survival of dopamine neurons is critical in developing new drugs for diseases such as Parkinson's.

... more about:
»Brain »Drug »MDMA »dopamine

"While MDMA itself isn't likely to be an appropriate therapy for neurodegenerative diseases, it may provide insights for developing new drugs that have similar properties.

"It's exciting to learn that an abused drug may have potential use for developing new therapeutics," he added. "It really makes you rethink your own preconceptions."

Dopamine is a neurotransmitter that has been found to regulate movement, balance, emotion and motivation, and it also affects pleasurable feelings in the brain. Researchers know that a loss of dopamine cells in the brain leads to the development of Parkinson's disease and possibly other movement disorders. Preventing dopamine cells from dying or aiding in the replacement of those cells is key to finding lasting therapies.

Lipton, director of the developmental neuroscience division in UC's psychiatry department, studies the long-term effects of abused drugs on the developing central nervous system. He noticed, during previous laboratory studies in rats, that prenatal exposure to MDMA increased growth of dopamine cells in the brain. His team then decided to study exposure to MDMA in cultured embryonic cells--where they confirmed that this drug was in fact increasing dopamine cell survival.

The findings, Lipton says, aren't consistent with what is known about adult brains, where MDMA has been shown to cause depletion of neurotransmitters--like dopamine--and has been linked to decreased brain activity.

MDMA, chemically known as methylenedioxymethamphetamine and sold and used illegally as "ecstasy," is a synthetic stimulant that prompts the secretion of large amounts of the neurotransmitters serotonin, dopamine and norepinephrine in the brain. This secretion can lead to prolonged periods of activity, hallucinations and euphoria. Before the United States banned it in 1985, MDMA was tested as a possible adjunct in psychotherapy. In 2001, the FDA agreed to allow MDMA to be tested as a possible treatment for post-traumatic stress disorder.

Dama Kimmon | EurekAlert!
Further information:
http://www.uc.edu

Further reports about: Brain Drug MDMA dopamine

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>