Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune system discovery could aid fight against TB

20.10.2006
A key aspect of how the body kicks the immune system into action against tuberculosis is revealed in research published today. The authors, writing in Science, hope that their research could aid the development of novel vaccines and immunotherapies to combat TB, which is responsible for two million deaths each year.

The cause of TB is a slow-growing bacterium known as Mycobacterium tuberculosis. Scientists have known for some time that when host cells are invaded by this bacterium, the host cells are able to call up additional immune cells such as lymphocytes to fight them and try to limit the damage which the bacteria can cause.

The new research, by scientists from Imperial College London, the Universities of Cambridge and Oxford, and other international institutions, identifies a receptor on the host cells which triggers the immune cells’ response to tuberculosis. The scientists demonstrated that without this receptor, known as CCR5, mycobacteria were able to thrive inside host cells, as the immune cells did not receive the signal from CCR5 to attack them.

The scientists hope that their findings could enable a novel vaccine or immunotherapy to be developed which could artificially kick the immune cells into action in the same way as CCR5. This could boost the immune response to TB.

... more about:
»CCR5 »Tuberculosis »Vaccine »immune cell »receptor

Both types of interventions are urgently required, since the BCG vaccine does not offer optimal protection and the current treatment regimens for tuberculosis require at least 6 months medication. This encourages the development of multi-drug resistant strains, as patients often do not complete the full course of treatment.

Dr Beate Kampmann, from the Wellcome Trust Centre for Clinical Tropical Medicine and the Department of Paediatrics at Imperial College London, and one of the authors of the study, said: “These results describe a novel mechanism whereby Mycobacterium tuberculosis communicates with the human immune system. Another piece of this complex jigsaw has been filled in, which will help us to target TB with very specific drugs or vaccines.

"We can now test potential vaccines or drug candidates for the desired effect, as we understand better how they should act," adds Dr Kampmann.

The scientists believe their research will also be of interest to those developing new drugs to combat HIV, which work by inhibiting the CCR5 receptor, which plays an important role in HIV-infection. The new research suggests that such drugs could impair the ability to fight off TB in HIV-infected patients receiving CCR5 receptor antagonists. TB is a big problem for individuals with HIV, as their weakened immune system renders them highly susceptible to this disease.

This research was funded by the Wellcome Trust, the UK Medical Research Council and the Swiss National Science Foundation. It was carried out by scientists from Imperial College London, UK; the University of Cambridge, UK; the University of Oxford, UK; National University of Singapore; Nanyang Technological University, Singapore; the University of Basel, Switzerland; and Lionex Diagnostics and Therapeutics GmbH, Germany.

Laura Gallagher | alfa
Further information:
http://www.imperial.ac.uk

Further reports about: CCR5 Tuberculosis Vaccine immune cell receptor

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>