Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genomic comparison of lactic acid bacteria published

18.10.2006
Zesty microbes enliven the palate, provide better blueprint for biofuels and specialty chemical production

With public concerns at a fevered pitch over the bacterial contamination of spinach, it is easy to lose track of how bland and deprived our world would be without the contribution to our food supply of such benign microbial players as lactic acid-producing bacteria.

Researchers from the U.S. Department of Energy Joint Genome Institute (DOE JGI) and the University of California, Davis, and their colleagues have characterized the genome sequences of nine different lactic acid-producing bacteria, or LAB, and have published their findings in the October 17 edition of the Proceedings of the National Academy of Sciences (http://www.pnas.org/

cgi/content/abstract/0607117103v1).

... more about:
»Lab »Production »acid »lactic »sequence

The small LAB genomes encode a diverse repertoire of genes for efficient carbon and nitrogen acquisition from the nutritionally rich environments they inhabit and reflect a limited range of biosynthetic capabilities promising broad industrial applications.

Lactic acid-producing bacteria play a key role in the production of fermented foods and beverages, accounting for tens of billions of dollars in sales annually. Products constituting a fine repast, such as wine, salami, cheese, sourdough bread, pickles, yogurt, cocoa, and coffee are all enhanced by LAB, which ferment six-carbon sugars, or hexoses, to produce lactic acid.

"DOE JGI's contribution to the whole study of lactic acid bacteria is simply immense," said David Mills, Associate Professor, Viticulture & Enology, University of California, Davis, and senior author on the study. "Access to the genome sequences for these fermentative microorganisms will dramatically increase our understanding of their role in industrial food production, leading to more optimized production schemes. For example, a better understanding of the role of lactic acid bacteria in cheese ripening will result in production strategies that reduce ripening time and thereby save energy. Moreover, lactic acid bacteria are used for production of various commercial bioproducts such as dextran and antimicrobials. The availability of these genome sequences will foster development of additional production schemes for biofuels and other important chemicals."

The publication is the culmination of a multiyear effort by the Lactic Acid Bacteria Genome Consortium, a group of at least a dozen academic organizations formed in 2001. Paul Richardson, DOE JGI Genomic Technologies Program head, said that the functional classification embraced a variety of industrially important genera, including Lactococcus, Enterococcus, Oenococcus, Pediococcus, Streptococcus, Leuconostoc, and Lactobacillus species. "The sequence of these diverse species offered a window into the sugar metabolism and energy conversion systems of LAB, and the evolution of these systems, which helped identify key enzymes involved in the production of end products including acetic acid, lactic acid, ethanol, and CO2."

"This work represents a hallmark in the genomic and bioinformatic characterization of lactic acid bacteria that have an impact on food, health, and agriculture," said Willem M. de Vos, Professor of Microbiology and Program Director of the Wageningen Center for Food Sciences in Holland. "In a heroic effort, their publication more than doubles the number of lactic acid bacterial genomes that are publicly available and provides the research community with a wealth of high-quality data that can be used to understand and improve starter cultures for dairy, meat, and wine fermentations; probiotic cultures; and other industrial applications. The extensive bioinformatic analyses by world experts adds to the impact of the genomic data and provides new hypotheses on how microbial genomes evolve by mechanisms of genomic loss and horizontal gene acquisitions."

David Gilbert | EurekAlert!
Further information:
http://www.llnl.gov

Further reports about: Lab Production acid lactic sequence

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>