Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Genomic comparison of lactic acid bacteria published

Zesty microbes enliven the palate, provide better blueprint for biofuels and specialty chemical production

With public concerns at a fevered pitch over the bacterial contamination of spinach, it is easy to lose track of how bland and deprived our world would be without the contribution to our food supply of such benign microbial players as lactic acid-producing bacteria.

Researchers from the U.S. Department of Energy Joint Genome Institute (DOE JGI) and the University of California, Davis, and their colleagues have characterized the genome sequences of nine different lactic acid-producing bacteria, or LAB, and have published their findings in the October 17 edition of the Proceedings of the National Academy of Sciences (


... more about:
»Lab »Production »acid »lactic »sequence

The small LAB genomes encode a diverse repertoire of genes for efficient carbon and nitrogen acquisition from the nutritionally rich environments they inhabit and reflect a limited range of biosynthetic capabilities promising broad industrial applications.

Lactic acid-producing bacteria play a key role in the production of fermented foods and beverages, accounting for tens of billions of dollars in sales annually. Products constituting a fine repast, such as wine, salami, cheese, sourdough bread, pickles, yogurt, cocoa, and coffee are all enhanced by LAB, which ferment six-carbon sugars, or hexoses, to produce lactic acid.

"DOE JGI's contribution to the whole study of lactic acid bacteria is simply immense," said David Mills, Associate Professor, Viticulture & Enology, University of California, Davis, and senior author on the study. "Access to the genome sequences for these fermentative microorganisms will dramatically increase our understanding of their role in industrial food production, leading to more optimized production schemes. For example, a better understanding of the role of lactic acid bacteria in cheese ripening will result in production strategies that reduce ripening time and thereby save energy. Moreover, lactic acid bacteria are used for production of various commercial bioproducts such as dextran and antimicrobials. The availability of these genome sequences will foster development of additional production schemes for biofuels and other important chemicals."

The publication is the culmination of a multiyear effort by the Lactic Acid Bacteria Genome Consortium, a group of at least a dozen academic organizations formed in 2001. Paul Richardson, DOE JGI Genomic Technologies Program head, said that the functional classification embraced a variety of industrially important genera, including Lactococcus, Enterococcus, Oenococcus, Pediococcus, Streptococcus, Leuconostoc, and Lactobacillus species. "The sequence of these diverse species offered a window into the sugar metabolism and energy conversion systems of LAB, and the evolution of these systems, which helped identify key enzymes involved in the production of end products including acetic acid, lactic acid, ethanol, and CO2."

"This work represents a hallmark in the genomic and bioinformatic characterization of lactic acid bacteria that have an impact on food, health, and agriculture," said Willem M. de Vos, Professor of Microbiology and Program Director of the Wageningen Center for Food Sciences in Holland. "In a heroic effort, their publication more than doubles the number of lactic acid bacterial genomes that are publicly available and provides the research community with a wealth of high-quality data that can be used to understand and improve starter cultures for dairy, meat, and wine fermentations; probiotic cultures; and other industrial applications. The extensive bioinformatic analyses by world experts adds to the impact of the genomic data and provides new hypotheses on how microbial genomes evolve by mechanisms of genomic loss and horizontal gene acquisitions."

David Gilbert | EurekAlert!
Further information:

Further reports about: Lab Production acid lactic sequence

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>