Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cause of nerve fiber damage in multiple sclerosis identified

18.10.2006
New information in emerging area of MS research could aid therapy development

Researchers have identified how the body’s own immune system contributes to the nerve fiber damage caused by multiple sclerosis, a finding that can potentially aid earlier diagnosis and improved treatment for this chronic disease.

The study reveals how immune system B-cells damage axons during MS attacks by inhibiting energy production in these nerve fiber cells, ultimately causing them to degenerate and die. Study results appear in the Oct. 15 issue of the Journal of Immunology.

B-cell-axon activity is an emerging area of MS research, one that is changing how scientists and clinicians can look at this disease. In this study, Dr. Yufen Qin and fellow researchers from UC Irvine’s School of Medicine analyzed spinal fluid and tissue samples from MS patients to identify substances that stimulate a B-cell immune response. They noted an increased level of B-cell antibodies on lesions and in spinal fluid bound to two specific enzymes – GAPDH and TPI.

... more about:
»Antibodies »Axon »B-cell »GAPDH »Myelin »Qin »T-cell »UCI »enzymes

These two enzymes are essential for efficient energy production. The researchers believe that the binding of these antibodies to these enzymes – GAPDH, in particular – may lower the amounts of ATP – the chemical fuel for cells – available in cells, which eventually can lead to axon cell degeneration and death. In addition to the energy-production function, GAPDH is involved with a number of genetic activities, such as RNA translocation, DNA replication and DNA repair.

Other recent studies have shown that binding of inhibitors to GAPDH and TPI causes decreased ATP production in neurons, followed by progressive neuronal degeneration and death. Moreover, patients with TPI deficiency can develop progressive neurological disorders.

“This research is exciting and potentially important for future treatments because it identifies new antibodies associated with MS that can be targeted with emerging therapies,” said Qin, an assistant professor of neurology. “Significantly, these are the first antibodies to be identified with axon activity, which is a new area researchers are exploring in the pathology of MS.”

MS is a chronic central nervous system disease that can cause blurred vision, poor coordination, slurred speech, numbness, acute fatigue and, in its most extreme form, blindness and paralysis. Some 400,000 Americans have this disease. Its causes are unknown, and symptoms are unpredictable and vary greatly in severity.

Much MS research is focused on an autoimmune process in which T-cells attack and damage myelin, the fatty insulating tissue of axons. These T-cells do not attack axons themselves; the process of demyelination interrupts electrical impulses that run through these nerve fibers, thus causing MS symptoms. Demyelination has been considered the central feature of MS.

Recently, however, Qin has been among a group of researchers who have discovered that B-cells too are involved with the autoimmune response to MS. Instead of targeting myelin, these B-cells attack axons directly. Axons are the long, slender fibers of a neuron that serve as the primary transmission lines of the nervous system, and as bundles they help make up nerves.

Research at UCI and elsewhere has shown that myelin grows back if the T-cell autoimmune response is turned off, and drugs exist or are in development to block demyelination. Axons, in turn, repair very slowly, which implies that B-cell attacks on axons may have a significant impact on the chronic central nervous system damage caused by MS.

“Since this area of research is in its early stage, it’s important to understand the process by which these B-cell responses happen,” Qin said. “Hopefully, by identifying these two crucial enzymes, it will lead to a greater understanding of MS and lead to more effective treatments for people who live with this disease.”

Johanna Kolln, Hui-Min Ren, Reng-Rong Da, Yiping Zhang, Dr. Michael Olek, Dr. Neal Hermanowicz, Lutz G. Hilgenberg, Martin A. Smith and Dr. Stanley van den Noort of UCI and Edzard Spillner of the University of Hamburg also worked on the study. The National Multiple Sclerosis Society and the National Institutes of Health provided funding support.

About the University of California, Irvine: The University of California, Irvine is a top-ranked university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 24,000 undergraduate and graduate students and about 1,400 faculty members. The second-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3.3 billion. For more UCI news, visit www.today.uci.edu.

Television: UCI has a broadcast studio available for live or taped interviews. For more information, visit www.today.uci.edu/broadcast.

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. The use of this line is available free-of-charge to radio news programs/stations who wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu

Further reports about: Antibodies Axon B-cell GAPDH Myelin Qin T-cell UCI enzymes

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>