Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study challenges belief that tree frogs depress metabolic rate after 'waxing' themselves

18.10.2006
In a fascinating new study from the November/December 2006 issue of Physiological and Biochemical Zoology, researchers from the University of Florida explore wiping behaviours in a tree frog that waxes itself, and test whether these frogs become dormant to conserve energy during dehydration.

Many amphibians have skin that offers little resistance to evaporative water loss. To compensate, these and some other arboreal frogs secrete lipids and then use an elaborate series of wiping motions to rub the waxy secretions over their entire bodies.

"This self-wiping is a complex behaviour involving the use of all four limbs to stroke or rub all dorsal and ventral body surfaces, including the limbs," explains Nadia A. Gomez (University of Florida, Gainesville) and her coauthors. They continue: "Thus, the animal is protected from dehydration, provided the external film of lipids is not physically disrupted by movements or other disturbance."

Tree frogs characteristically go into a resting posture after wiping themselves, tucking their limbs tightly against or beneath their body and closing their eyes. The researchers found that this series of actions following "waxing" allows tree frogs (Phyllomedusa hypochondrialis) to limit rates of surface evaporation to as little as 4 percent of that from a free water surface in the same environment.

... more about:
»Rate »metabolic »wiping

To examine the question of dormancy, the researchers found that waxed and inactive frogs had about the same metabolic rate as unwaxed, dehydrating frogs. This suggests that waxed frogs are not in a hibernation-like dormant state, as was previously thought. (Some frogs, however, showed moderate reductions of metabolic rate as dehydration advanced, suggesting that they might become dormant during, for example, a prolonged drought.)

"Our data do not provide strong evidence that P. hypochondrialis routinely depress metabolic rates and enter a deep dormant state during quiescent behaviours following wiping," explain the authors. "Moreover, quiescent Phyllomedusa remain responsive to [the] presence of insects and eat readily."

Suzanne Wu | EurekAlert!
Further information:
http://www.uchicago.edu

Further reports about: Rate metabolic wiping

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>