Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA computing targets West Nile Virus, other deadly diseases

18.10.2006
Researchers say that they have developed a DNA-based computer that could lead to faster, more accurate tests for diagnosing West Nile Virus and bird flu. Representing the first "medium-scale integrated molecular circuit," it is the most powerful computing device of its type to date, they say.

The new technology could be used in the future, perhaps in 5 to 10 years, to develop instruments that can simultaneously diagnose and treat cancer, diabetes or other diseases, according to a team of scientists at Columbia University Medical Center in New York and the University of New Mexico, Albuquerque. Their study is scheduled to appear in the November issue of the American Chemical Society's Nano Letters, a monthly peer-reviewed journal.

"This is a big step in DNA computing," says Joanne Macdonald, Ph.D., a virologist at Columbia University's Department of Medicine. Macdonald led the research team that developed MAYA-II (Molecular Array of YES and AND logic gates) ¯ a "computer" whose circuits consist of DNA instead of silicon. She likens the significance of the advance to the development of the earliest silicon chips. "The study shows that large-scale DNA computers are possible."

"These DNA computers won't compete with silicon computing in terms of speed, but their advantage is that they can be used in fluids, such as a sample of blood or in the body, and make decisions at the level of a single cell," says the researcher, whose work is funded by the National Science Foundation. Her main collaborators in this study were Milan Stojanovic, of Columbia University, and Darko Stefanovic, of the University of New Mexico.

... more about:
»Computing »DNA »MAYA-II »Macdonald »NILE »Virus

Macdonald is currently using the technology to improve disease diagnostics for West Nile Virus by building a device to quickly and accurately distinguish between various viral strains and hopes to use similar techniques to detect new strains of bird flu. In the future, she suggests that DNA computers could conceivably be implanted in the body to both diagnose and kill cancer cells or monitor and treat diabetes by dispensing insulin when needed.

Scientists have tried for years to build computers out of DNA (deoxyribonucleic acid), nature's chemical blueprint for life. But getting nano-sized pieces of DNA to act as electrical circuits capable of problem-solving like their silicon counterparts has remained a major challenge.

In a series of laboratory demonstrations over a two-year period, Macdonald and her associates showcased the computer's potential by engaging MAYA-II in a complete game of tic-tac-toe against human opponents, winning every time except in the rare event of a tie. Shown in the foreground of the picture above is a cell-culture plate containing pieces of DNA that code for possible "moves"; a display screen (background) shows that the computer (red squares) has won the game against its human opponent (blue).

Composed of more than 100 DNA circuits, MAYA-II is quadruple the size of its predecessor, MAYA-I, a similar DNA-based computer developed by the research team three-years ago. With limited moves, the first MAYA could only play an incomplete game of tic-tac-toe, the researcher says.

The experimental device looks nothing like today's high-tech gaming consoles. MAYA-II consists of nine cell-culture wells arranged in a pattern that resembles a tic-tac-toe grid. Each well contains a solution of DNA material that is coded with "red" or "green" fluorescent dye.

The computer always makes the first move by activating the center well. Instead of using buttons or joysticks, a human player makes a "move" by adding a DNA sequence corresponding to their move in the eight remaining wells. The well chosen for the move by the human player responds by fluorescing green, indicating a match to the player's DNA input. The move also triggers the computer to make a strategic counter-move in one of the remaining wells, which fluoresces red. The game play continues until the computer eventually wins, as it is pre-programmed to do, Macdonald says. Each move takes about 30 minutes, she says.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

Further reports about: Computing DNA MAYA-II Macdonald NILE Virus

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>