Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA computing targets West Nile Virus, other deadly diseases

18.10.2006
Researchers say that they have developed a DNA-based computer that could lead to faster, more accurate tests for diagnosing West Nile Virus and bird flu. Representing the first "medium-scale integrated molecular circuit," it is the most powerful computing device of its type to date, they say.

The new technology could be used in the future, perhaps in 5 to 10 years, to develop instruments that can simultaneously diagnose and treat cancer, diabetes or other diseases, according to a team of scientists at Columbia University Medical Center in New York and the University of New Mexico, Albuquerque. Their study is scheduled to appear in the November issue of the American Chemical Society's Nano Letters, a monthly peer-reviewed journal.

"This is a big step in DNA computing," says Joanne Macdonald, Ph.D., a virologist at Columbia University's Department of Medicine. Macdonald led the research team that developed MAYA-II (Molecular Array of YES and AND logic gates) ¯ a "computer" whose circuits consist of DNA instead of silicon. She likens the significance of the advance to the development of the earliest silicon chips. "The study shows that large-scale DNA computers are possible."

"These DNA computers won't compete with silicon computing in terms of speed, but their advantage is that they can be used in fluids, such as a sample of blood or in the body, and make decisions at the level of a single cell," says the researcher, whose work is funded by the National Science Foundation. Her main collaborators in this study were Milan Stojanovic, of Columbia University, and Darko Stefanovic, of the University of New Mexico.

... more about:
»Computing »DNA »MAYA-II »Macdonald »NILE »Virus

Macdonald is currently using the technology to improve disease diagnostics for West Nile Virus by building a device to quickly and accurately distinguish between various viral strains and hopes to use similar techniques to detect new strains of bird flu. In the future, she suggests that DNA computers could conceivably be implanted in the body to both diagnose and kill cancer cells or monitor and treat diabetes by dispensing insulin when needed.

Scientists have tried for years to build computers out of DNA (deoxyribonucleic acid), nature's chemical blueprint for life. But getting nano-sized pieces of DNA to act as electrical circuits capable of problem-solving like their silicon counterparts has remained a major challenge.

In a series of laboratory demonstrations over a two-year period, Macdonald and her associates showcased the computer's potential by engaging MAYA-II in a complete game of tic-tac-toe against human opponents, winning every time except in the rare event of a tie. Shown in the foreground of the picture above is a cell-culture plate containing pieces of DNA that code for possible "moves"; a display screen (background) shows that the computer (red squares) has won the game against its human opponent (blue).

Composed of more than 100 DNA circuits, MAYA-II is quadruple the size of its predecessor, MAYA-I, a similar DNA-based computer developed by the research team three-years ago. With limited moves, the first MAYA could only play an incomplete game of tic-tac-toe, the researcher says.

The experimental device looks nothing like today's high-tech gaming consoles. MAYA-II consists of nine cell-culture wells arranged in a pattern that resembles a tic-tac-toe grid. Each well contains a solution of DNA material that is coded with "red" or "green" fluorescent dye.

The computer always makes the first move by activating the center well. Instead of using buttons or joysticks, a human player makes a "move" by adding a DNA sequence corresponding to their move in the eight remaining wells. The well chosen for the move by the human player responds by fluorescing green, indicating a match to the player's DNA input. The move also triggers the computer to make a strategic counter-move in one of the remaining wells, which fluoresces red. The game play continues until the computer eventually wins, as it is pre-programmed to do, Macdonald says. Each move takes about 30 minutes, she says.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

Further reports about: Computing DNA MAYA-II Macdonald NILE Virus

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>