Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How ants find their way

18.10.2006
Scientists reveal how wood ants navigate by visual landmarks

Ever wondered how ants find their way straight to the uncovered food in your kitchen? Now scientists have discovered how the humble wood ant navigates over proportionally huge distances, using just very poor eyesight and confusing and changing natural landmarks. The research could have significant benefits in the development of autonomous robots and in furthering our understanding of basic animal learning processes.

Scientists at the University of Sussex, funded by the Biotechnology and Biological Sciences Research Council (BBSRC), have shown precisely how the ant's visual navigation strategy works. On a wood ant's first trip to a food site it follows a chemical trail left by earlier ants. This is a slow way of travelling as the ant needs to walk with its antennae to the ground. However, this initial route forms the basis of an efficient learning strategy. On the first trip ants store images of the route as they travel and on later trips to the food site will navigate using a combination of landmarks and memories of the whole landscape. The scientists found the ants even used different sets of landmark memories depending on whether they were on their way to food, or whether they were full and heading back to the nest. Ants store many memories and have mechanisms to activate the right ones.

The researchers refined their research on ant visual memory selection in lab experiments. Research leader, Professor Tom Collett from the University of Sussex's Centre for Neuroscience, explained: "To show that ants use visual memory to navigate we trained ants to find food 10cm from a cylinder. We then doubled the size of the cylinder and the ants searched for the food at 20cm away where the retinal size of the landmark was the same."

... more about:
»Landmark »Visual »cylinder »navigate

To analyse the ants' powers of recall an ambiguous situation was set up. Ants were trained to search for food between two cylinders of different sizes and then tested with the training cylinders replaced by two cylinders of the same size. Would ants know which cylinder is which? They were only able to search in the predicted place when a patterned background was introduced as a retrieval cue. Professor Collett said: "To know which cylinder was which ants needed the patterned background to be in a different position on the retina when they faced one or other cylinder. Accurate memory retrieval often relies on ants storing a large panorama."

A better understanding of ant navigation could help to develop autonomous robots. Professor Collett explained: "Insect behaviour is much more 'machine-like' than that of mammals, and ants are a lot less flexible in their use of navigational strategies. This stereotypy makes it easier to understand how their strategies operate and to design robots that navigate following similar principles."

The researchers are now planning further experiments that will reveal new levels of detail about insect visuo-motor behaviour and allow the construction of models of memory retrieval.

Professor Julia Goodfellow, Chief Executive of BBSRC, said: "Cognitive systems research gives us the opportunity to learn more about the ways that animals, including humans, process information to learn, reason, make decisions and communicate. BBSRC is working with other Research Councils and funders to support new interdisciplinary research in this area."

Matt Goode | alfa
Further information:
http://www.bbsrc.ac.uk

Further reports about: Landmark Visual cylinder navigate

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>