Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene involved in common birth defect also regulates skin biology

17.10.2006
Following up on an earlier discovery that a gene called IRF6 is involved in the common birth defect cleft lip and palate, researchers at the University of Iowa Roy J. and Lucille A. Carver College of Medicine and their colleagues have identified the function of the gene.

Their latest findings, published online Oct. 15 in Nature Genetics, reveal an unexpected role for IRF6 in the growth and development of skin cells, a discovery that may have implications for wound healing and cancer research.

In 2002, Brian Schutte, Ph.D., UI associate professor of pediatrics and nursing, and Jeff Murray, M.D., UI professor of pediatrics, pediatric dentistry and biological sciences, and the Roy J. Carver Chair in Perinatal Health, led a study showing that mutations in IRF6 cause Van der Woude syndrome (VWS), a rare, dominantly inherited form of cleft lip and palate. Subsequently, the researchers found that this gene also is mutated in 10 to 15 percent of the more common, so-called non-syndromic cases of cleft lip and palate. Cleft lip and palate, where the lip or both the lip and palate (roof of the mouth) fail to close, occurs in approximately one of every 1,000 babies.

In order to determine the function of this gene, the researchers created mice that lacked IRF6. These mice had very abnormal skin as well as a cleft palate. Detailed analysis of the mice revealed that IRF6 regulates the proliferation and differentiation of keratinocytes -- the main cell type in the epidermis or outer layer of skin. Keratinocytes also provide a protective barrier around the mouth, gut, liver, lung, kidney and other internal organs.

... more about:
»CARC »IRF6 »Mutation »Pediatric »abnormal »cleft »cleft lip

"This study really looks at the role of IRF6 in skin development. By focusing on skin we felt we could learn more about this specific cell type that is also abnormal in the palate," Schutte said. "The insight we gained into the function of IRF6 will help focus research efforts to identify other genes involved in cleft lip and palate."

Skin is an extremely important tissue, as it is the largest tissue in the body and it provides a critical external barrier. Normal epidermis has four layers of keratinocytes. The UI study showed that mice that lack IRF6 have abnormal skin development and are missing the upper two cellular layers of the epidermis. The researchers also showed abnormal proliferation of keratinocytes in one of the remaining two layers and failure of these cells to die off or differentiate as normal.

Although humans with Van der Woude syndrome do not have skin defects, a similar human condition, called popliteal ptyergium syndrome (PPS) that is also caused by mutations in IRF6, does cause skin abnormalities in addition to cleft lip and palate. Thus, the UI researchers were not completely surprised by the skin abnormalities in the mice.

Mice provided a particularly good animal model for the UI study because mice and humans have very similar facial development and both share the distinctive mammalian structure of a palate, which separates the nasal airway from the mouth allowing a baby to suckle. In addition, it is fairly easy to create mutations in mice to study a particular gene's function.

"Having an animal model for a major human birth defect like cleft lip and palate provides us with the opportunity to investigate ways to better treat and prevent these disorders much more quickly than was previously possible," Murray said. "Dr. Schutte's work has also expanded our knowledge of other critical areas of human health such as the role of our skin in development and in how wounds and scars may heal."

"Our results open many new avenues of research because the function we discovered for IRF6 is vastly different than the best understood function for the other IRF genes," Schutte added.

IRF6 belongs to a family of nine IRF genes, which have been extensively investigated. The UI study reveals that IRF6 has a different function than the other known IRF genes, which are all primarily involved in the immune response. Its newly identified role in cell proliferation and differentiation may mean that IRF6 also is involved in other medically important areas of biology such as cancer and wound healing.

The main funding for the study is from a National Institute of Dental and Craniofacial Research grant for the UI Craniofacial Anomalies Research Center (CARC). Murray is the principal investigator for the grant. The CARC also supported a complementary study by researchers at the University of Manchester in England, who are collaborating with Schutte and Murray. The Manchester team investigated a different mutation in the mouse IRF6 gene and observed similar results to the UI study. This second study will also be published in Nature Genetics.

"The support from the CARC was critical to the completion of these two studies because several different disciplines were needed to characterize the abnormalities of the mice," Schutte said. "The CARC brought together specialists to attack the problem from many different directions."

Dave Pedersen | EurekAlert!
Further information:
http://www.uiowa.edu

Further reports about: CARC IRF6 Mutation Pediatric abnormal cleft cleft lip

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>