Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vax and Pax: Taking turns to build an eye

17.10.2006
Opposing ball clubs don't take the field at the same time, and neither do teams of proteins responsible for creating the eye. While one team builds the retina, in adjacent cellular turf the opponents are busy constructing the cord that carries visual signals to the brain. And these guys aren't supposed to mingle.

That's why researchers at the Salk Institute for Biological Studies were surprised to find the respective team captains--Vax2, a protein that along with Vax1 builds the optic nerve cord, and Pax6, a protein that drives retinal fate--playing on the same field. That puzzle is explained in a forthcoming paper in Genes and Development.

Earlier studies from the laboratory of Greg Lemke, Ph.D., professor in Salk's Molecular Neurobiology Laboratory, had shown that Vax2 antagonized Pax6. "We knew that Vax1 and 2 acted together to inactivate Pax6. That's how you get an optic nerve--by preventing it from becoming a retina," explains Lemke. The only problem was that later on both Vax2 and Pax6 were co-expressed in the same cells. "If Vax2 was repressing Pax6 this seemed inconsistent," he says.

Both proteins bind DNA and function in a cell's nucleus to switch genes on and off. Pax6 regulates the development of the retina, while Vax2 ensures that the optic nerve gets built. Finding both proteins in the same nucleus would make about as much sense as having runners for the Giants and the Dodgers on base at the same time.

... more about:
»Nucleus »Pax6 »Retina »Vax2 »optic nerve

Analyzing eye development in both mouse and chick tissues, Lemke and former postdoctoral fellow Jin Woo Kim, Ph.D., solved the mystery. Stina Mui, a former graduate student in the Lemke lab had originally observed Vax2 in the cytoplasm of cultured cell lines and Kim had taken on the task of figuring out why. He showed that Vax2 protein is indeed expressed in the same retinal cells as Pax6, but that Vax2 shuttles in and out of the nucleus in response to a signaling molecule known as Sonic hedgehog.

"Vax2 only entered the nucleus when its biological activity was needed," says Kim. Once its job was done, Vax2 was apparently booted out of the nucleus into the cytoplasm where it remained in cellular time-out.

Kim and Lemke found that Vax2 shuttling was controlled by a chemical modification known as phosphorylation. Phosphorylation benched Vax2 in the cytoplasm, where it took a breather while Pax6 took over to form the retina. Kim then made a dramatic discovery. When he engineered a Vax2 protein that could not be phosphorylated--putting Pax6 permanently out of commission--and forced that protein into chick retinal precursor cells, the chicks had no eye.

"What you had was a chicken with just a big optic nerve," says Lemke, noting with satisfaction that this was exactly the opposite outcome his group had observed when they genetically eliminated Vax2 and Vax1 genes from mice. "In that case you had no optic nerve but a giant eye. This basically says that you really have to get this protein out of the nucleus--if you keep it there you get no retina at all."

But why doesn't mother nature simply dispose of Vax2 when she's finished with it? Most likely because it's recycled for use again later in development. Explains Lemke, "This is a mechanism for pushing Vax2 aside--so it can't do any damage by repressing Pax6--but keeping it close by so it can be quickly activated when it is needed again later on."

"One consequence of this work is that we learn things ultimately important for medicine," he continues. "The Sonic hedgehog pathway plays an important role during embryogenesis and also in the development of a series of cancers. Understanding the pathway is directly relevant to a whole spectrum of human diseases."

Kim, who is now an assistant professor at Korea Advanced Institute of Science and Technology (KAIST) in Daejeon, South Korea, will continue collaborating with the Lemke lab by engineering a so-called "knock-in" mouse expressing the nonphosphorylatable protein in the normal developmental timeframe. The prediction is that, like the chicks, that mouse should have big problems making an eye. Stay tuned.

Gina Kirchweger | EurekAlert!
Further information:
http://www.salk.edu

Further reports about: Nucleus Pax6 Retina Vax2 optic nerve

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>