Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vax and Pax: Taking turns to build an eye

17.10.2006
Opposing ball clubs don't take the field at the same time, and neither do teams of proteins responsible for creating the eye. While one team builds the retina, in adjacent cellular turf the opponents are busy constructing the cord that carries visual signals to the brain. And these guys aren't supposed to mingle.

That's why researchers at the Salk Institute for Biological Studies were surprised to find the respective team captains--Vax2, a protein that along with Vax1 builds the optic nerve cord, and Pax6, a protein that drives retinal fate--playing on the same field. That puzzle is explained in a forthcoming paper in Genes and Development.

Earlier studies from the laboratory of Greg Lemke, Ph.D., professor in Salk's Molecular Neurobiology Laboratory, had shown that Vax2 antagonized Pax6. "We knew that Vax1 and 2 acted together to inactivate Pax6. That's how you get an optic nerve--by preventing it from becoming a retina," explains Lemke. The only problem was that later on both Vax2 and Pax6 were co-expressed in the same cells. "If Vax2 was repressing Pax6 this seemed inconsistent," he says.

Both proteins bind DNA and function in a cell's nucleus to switch genes on and off. Pax6 regulates the development of the retina, while Vax2 ensures that the optic nerve gets built. Finding both proteins in the same nucleus would make about as much sense as having runners for the Giants and the Dodgers on base at the same time.

... more about:
»Nucleus »Pax6 »Retina »Vax2 »optic nerve

Analyzing eye development in both mouse and chick tissues, Lemke and former postdoctoral fellow Jin Woo Kim, Ph.D., solved the mystery. Stina Mui, a former graduate student in the Lemke lab had originally observed Vax2 in the cytoplasm of cultured cell lines and Kim had taken on the task of figuring out why. He showed that Vax2 protein is indeed expressed in the same retinal cells as Pax6, but that Vax2 shuttles in and out of the nucleus in response to a signaling molecule known as Sonic hedgehog.

"Vax2 only entered the nucleus when its biological activity was needed," says Kim. Once its job was done, Vax2 was apparently booted out of the nucleus into the cytoplasm where it remained in cellular time-out.

Kim and Lemke found that Vax2 shuttling was controlled by a chemical modification known as phosphorylation. Phosphorylation benched Vax2 in the cytoplasm, where it took a breather while Pax6 took over to form the retina. Kim then made a dramatic discovery. When he engineered a Vax2 protein that could not be phosphorylated--putting Pax6 permanently out of commission--and forced that protein into chick retinal precursor cells, the chicks had no eye.

"What you had was a chicken with just a big optic nerve," says Lemke, noting with satisfaction that this was exactly the opposite outcome his group had observed when they genetically eliminated Vax2 and Vax1 genes from mice. "In that case you had no optic nerve but a giant eye. This basically says that you really have to get this protein out of the nucleus--if you keep it there you get no retina at all."

But why doesn't mother nature simply dispose of Vax2 when she's finished with it? Most likely because it's recycled for use again later in development. Explains Lemke, "This is a mechanism for pushing Vax2 aside--so it can't do any damage by repressing Pax6--but keeping it close by so it can be quickly activated when it is needed again later on."

"One consequence of this work is that we learn things ultimately important for medicine," he continues. "The Sonic hedgehog pathway plays an important role during embryogenesis and also in the development of a series of cancers. Understanding the pathway is directly relevant to a whole spectrum of human diseases."

Kim, who is now an assistant professor at Korea Advanced Institute of Science and Technology (KAIST) in Daejeon, South Korea, will continue collaborating with the Lemke lab by engineering a so-called "knock-in" mouse expressing the nonphosphorylatable protein in the normal developmental timeframe. The prediction is that, like the chicks, that mouse should have big problems making an eye. Stay tuned.

Gina Kirchweger | EurekAlert!
Further information:
http://www.salk.edu

Further reports about: Nucleus Pax6 Retina Vax2 optic nerve

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>