Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop a novel method for obtaining compounds to design more effective antibiotics

17.10.2006
Form is everything in chemistry. A protein, made up of a chain of amino acids arranged one after another as determined by the corresponding gene, is incapable of doing anything worthwhile just as it is.

It has to fold into a three-dimensional structure to be able to develop a function in the organism. That is why Francis Crick, one of the discoverers of the DNA molecule structure, once said: “If you want to understand the function, study the structure”. Likewise, if you want to obtain a function, acquire a structure. And this is precisely what a research group at the Universitat Jaume I in Castelló has done. They have developed a more effective and selective method to construct compounds whose form guarantees certain functions of biological interest.

The method, which has earned the “hot paper” status by the editorial board of the prestigious scientific journal Angewandte Chemie International Edition where the research will be published, consists in constructing a template on which the molecule with the desired structure is assembled. Specifically the objective was to form a macrocycle, that is, a ring-shaped molecule. The annular structure is fundamental when it comes to achieving certain properties. In fact numerous drugs, such as anti-carcinogenics or antibiotics, have a cyclic structure.

Now the question is, how can a ring on a molecular scale be constructed? To date, there have been mainly two approaches. One of them relies on chance: group the molecules that are to integrate the final compound together and wait for them to assembly and form an annular structure. “That’s almost like dropping a thread and hoping it will form a circle when it lands. Some statistical laws intervene here, but they do not guarantee more than 10% effectiveness for that to happen”, indicates Santiago Luis, professor of the Department of Inorganic and Organic Chemistry at UJI and the researcher responsible for the study. In short, only 10 out of 100 molecules end up forming a ring shape.

... more about:
»Molecular »Santiago »effective »method

The second approach involves the use of templates around which the molecular ring is assembled. Those most widely used to date have been the positively or negatively charged atoms. The problem is that these spherical templates offered by nature have fixed diameters and this results in a limited set of templates which leaves little room for refinements. “These spherical systems oblige us to make completely symmetric molecules, and what we’re really interested in is in playing with form”, adds Santiago Luis.

The novelty of this technique presented by the UJI researchers lies in the fact that it is the first time that an anionic organic template (negatively charged) is used to prepare ring-structured pseudoprotein compounds. The idea is to construct a molecule which acts as a chemical negative for the molecule that we wish to obtain, thus serving as a structure around which the latter can be constructed. This works in a similar fashion to the way jewellers create a circular mould around which molten gold takes the ring shape intended.

“The election of an appropriate molecular template allows us to obtain these structures with high selectivity and effectiveness. We are talking about effectiveness between 80% and 100%”, Santiago Luis affirms. The main contribution of the UJI group work is, precisely, to leave behind the work with set molecular templates and open the way to directed template modification. This is why the editors of Angewandte Chemie International Edition are interested in highlighting this finding.

“What we’ve done is to conceptually prove that we can design and construct anionic organic templates that we can use perfectly well to favour a given chemical reaction”, Santiago Luis concludes.

Hugo Cerdà | alfa
Further information:
http://www.uji.es/ocit/noticies/detall&id_a=7228007

Further reports about: Molecular Santiago effective method

More articles from Life Sciences:

nachricht The body's street sweepers
18.12.2017 | Ludwig-Maximilians-Universität München

nachricht Life on the edge prepares plants for climate change
18.12.2017 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

The body's street sweepers

18.12.2017 | Life Sciences

Fast flowing heat in layered material heterostructures

18.12.2017 | Materials Sciences

Life on the edge prepares plants for climate change

18.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>