Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop a novel method for obtaining compounds to design more effective antibiotics

17.10.2006
Form is everything in chemistry. A protein, made up of a chain of amino acids arranged one after another as determined by the corresponding gene, is incapable of doing anything worthwhile just as it is.

It has to fold into a three-dimensional structure to be able to develop a function in the organism. That is why Francis Crick, one of the discoverers of the DNA molecule structure, once said: “If you want to understand the function, study the structure”. Likewise, if you want to obtain a function, acquire a structure. And this is precisely what a research group at the Universitat Jaume I in Castelló has done. They have developed a more effective and selective method to construct compounds whose form guarantees certain functions of biological interest.

The method, which has earned the “hot paper” status by the editorial board of the prestigious scientific journal Angewandte Chemie International Edition where the research will be published, consists in constructing a template on which the molecule with the desired structure is assembled. Specifically the objective was to form a macrocycle, that is, a ring-shaped molecule. The annular structure is fundamental when it comes to achieving certain properties. In fact numerous drugs, such as anti-carcinogenics or antibiotics, have a cyclic structure.

Now the question is, how can a ring on a molecular scale be constructed? To date, there have been mainly two approaches. One of them relies on chance: group the molecules that are to integrate the final compound together and wait for them to assembly and form an annular structure. “That’s almost like dropping a thread and hoping it will form a circle when it lands. Some statistical laws intervene here, but they do not guarantee more than 10% effectiveness for that to happen”, indicates Santiago Luis, professor of the Department of Inorganic and Organic Chemistry at UJI and the researcher responsible for the study. In short, only 10 out of 100 molecules end up forming a ring shape.

... more about:
»Molecular »Santiago »effective »method

The second approach involves the use of templates around which the molecular ring is assembled. Those most widely used to date have been the positively or negatively charged atoms. The problem is that these spherical templates offered by nature have fixed diameters and this results in a limited set of templates which leaves little room for refinements. “These spherical systems oblige us to make completely symmetric molecules, and what we’re really interested in is in playing with form”, adds Santiago Luis.

The novelty of this technique presented by the UJI researchers lies in the fact that it is the first time that an anionic organic template (negatively charged) is used to prepare ring-structured pseudoprotein compounds. The idea is to construct a molecule which acts as a chemical negative for the molecule that we wish to obtain, thus serving as a structure around which the latter can be constructed. This works in a similar fashion to the way jewellers create a circular mould around which molten gold takes the ring shape intended.

“The election of an appropriate molecular template allows us to obtain these structures with high selectivity and effectiveness. We are talking about effectiveness between 80% and 100%”, Santiago Luis affirms. The main contribution of the UJI group work is, precisely, to leave behind the work with set molecular templates and open the way to directed template modification. This is why the editors of Angewandte Chemie International Edition are interested in highlighting this finding.

“What we’ve done is to conceptually prove that we can design and construct anionic organic templates that we can use perfectly well to favour a given chemical reaction”, Santiago Luis concludes.

Hugo Cerdà | alfa
Further information:
http://www.uji.es/ocit/noticies/detall&id_a=7228007

Further reports about: Molecular Santiago effective method

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>