Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop a novel method for obtaining compounds to design more effective antibiotics

17.10.2006
Form is everything in chemistry. A protein, made up of a chain of amino acids arranged one after another as determined by the corresponding gene, is incapable of doing anything worthwhile just as it is.

It has to fold into a three-dimensional structure to be able to develop a function in the organism. That is why Francis Crick, one of the discoverers of the DNA molecule structure, once said: “If you want to understand the function, study the structure”. Likewise, if you want to obtain a function, acquire a structure. And this is precisely what a research group at the Universitat Jaume I in Castelló has done. They have developed a more effective and selective method to construct compounds whose form guarantees certain functions of biological interest.

The method, which has earned the “hot paper” status by the editorial board of the prestigious scientific journal Angewandte Chemie International Edition where the research will be published, consists in constructing a template on which the molecule with the desired structure is assembled. Specifically the objective was to form a macrocycle, that is, a ring-shaped molecule. The annular structure is fundamental when it comes to achieving certain properties. In fact numerous drugs, such as anti-carcinogenics or antibiotics, have a cyclic structure.

Now the question is, how can a ring on a molecular scale be constructed? To date, there have been mainly two approaches. One of them relies on chance: group the molecules that are to integrate the final compound together and wait for them to assembly and form an annular structure. “That’s almost like dropping a thread and hoping it will form a circle when it lands. Some statistical laws intervene here, but they do not guarantee more than 10% effectiveness for that to happen”, indicates Santiago Luis, professor of the Department of Inorganic and Organic Chemistry at UJI and the researcher responsible for the study. In short, only 10 out of 100 molecules end up forming a ring shape.

... more about:
»Molecular »Santiago »effective »method

The second approach involves the use of templates around which the molecular ring is assembled. Those most widely used to date have been the positively or negatively charged atoms. The problem is that these spherical templates offered by nature have fixed diameters and this results in a limited set of templates which leaves little room for refinements. “These spherical systems oblige us to make completely symmetric molecules, and what we’re really interested in is in playing with form”, adds Santiago Luis.

The novelty of this technique presented by the UJI researchers lies in the fact that it is the first time that an anionic organic template (negatively charged) is used to prepare ring-structured pseudoprotein compounds. The idea is to construct a molecule which acts as a chemical negative for the molecule that we wish to obtain, thus serving as a structure around which the latter can be constructed. This works in a similar fashion to the way jewellers create a circular mould around which molten gold takes the ring shape intended.

“The election of an appropriate molecular template allows us to obtain these structures with high selectivity and effectiveness. We are talking about effectiveness between 80% and 100%”, Santiago Luis affirms. The main contribution of the UJI group work is, precisely, to leave behind the work with set molecular templates and open the way to directed template modification. This is why the editors of Angewandte Chemie International Edition are interested in highlighting this finding.

“What we’ve done is to conceptually prove that we can design and construct anionic organic templates that we can use perfectly well to favour a given chemical reaction”, Santiago Luis concludes.

Hugo Cerdà | alfa
Further information:
http://www.uji.es/ocit/noticies/detall&id_a=7228007

Further reports about: Molecular Santiago effective method

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>