Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop a novel method for obtaining compounds to design more effective antibiotics

17.10.2006
Form is everything in chemistry. A protein, made up of a chain of amino acids arranged one after another as determined by the corresponding gene, is incapable of doing anything worthwhile just as it is.

It has to fold into a three-dimensional structure to be able to develop a function in the organism. That is why Francis Crick, one of the discoverers of the DNA molecule structure, once said: “If you want to understand the function, study the structure”. Likewise, if you want to obtain a function, acquire a structure. And this is precisely what a research group at the Universitat Jaume I in Castelló has done. They have developed a more effective and selective method to construct compounds whose form guarantees certain functions of biological interest.

The method, which has earned the “hot paper” status by the editorial board of the prestigious scientific journal Angewandte Chemie International Edition where the research will be published, consists in constructing a template on which the molecule with the desired structure is assembled. Specifically the objective was to form a macrocycle, that is, a ring-shaped molecule. The annular structure is fundamental when it comes to achieving certain properties. In fact numerous drugs, such as anti-carcinogenics or antibiotics, have a cyclic structure.

Now the question is, how can a ring on a molecular scale be constructed? To date, there have been mainly two approaches. One of them relies on chance: group the molecules that are to integrate the final compound together and wait for them to assembly and form an annular structure. “That’s almost like dropping a thread and hoping it will form a circle when it lands. Some statistical laws intervene here, but they do not guarantee more than 10% effectiveness for that to happen”, indicates Santiago Luis, professor of the Department of Inorganic and Organic Chemistry at UJI and the researcher responsible for the study. In short, only 10 out of 100 molecules end up forming a ring shape.

... more about:
»Molecular »Santiago »effective »method

The second approach involves the use of templates around which the molecular ring is assembled. Those most widely used to date have been the positively or negatively charged atoms. The problem is that these spherical templates offered by nature have fixed diameters and this results in a limited set of templates which leaves little room for refinements. “These spherical systems oblige us to make completely symmetric molecules, and what we’re really interested in is in playing with form”, adds Santiago Luis.

The novelty of this technique presented by the UJI researchers lies in the fact that it is the first time that an anionic organic template (negatively charged) is used to prepare ring-structured pseudoprotein compounds. The idea is to construct a molecule which acts as a chemical negative for the molecule that we wish to obtain, thus serving as a structure around which the latter can be constructed. This works in a similar fashion to the way jewellers create a circular mould around which molten gold takes the ring shape intended.

“The election of an appropriate molecular template allows us to obtain these structures with high selectivity and effectiveness. We are talking about effectiveness between 80% and 100%”, Santiago Luis affirms. The main contribution of the UJI group work is, precisely, to leave behind the work with set molecular templates and open the way to directed template modification. This is why the editors of Angewandte Chemie International Edition are interested in highlighting this finding.

“What we’ve done is to conceptually prove that we can design and construct anionic organic templates that we can use perfectly well to favour a given chemical reaction”, Santiago Luis concludes.

Hugo Cerdà | alfa
Further information:
http://www.uji.es/ocit/noticies/detall&id_a=7228007

Further reports about: Molecular Santiago effective method

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Link Discovered between Immune System, Brain Structure and Memory

26.04.2017 | Life Sciences

New survey hints at exotic origin for the Cold Spot

26.04.2017 | Physics and Astronomy

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>