Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Resistance and genetic sensitivity to sleeping sickness

16.10.2006
Human African trypanosomiasis, more commonly called sleeping sickness, is induced by a parasite, the trypanosome, transmitted to humans by the bite of an insect, the glossinid tse-tse fly.

There has been a resurgence of this disease over the past 20 years in Sub-Saharan Africa. The World Health Organization (WHO) in a 1998 report estimated the number of people infected to be about 300 000. Awareness of the seriousness of the situation led to an increase in screening and treatment operations over the past five years, allowing a substantial fall in the number of subjects infected.

Sleeping sickness classically manifests itself in two forms, corresponding to two parasite subspecies. The chronic form, encountered in Central and West African countries, is caused by Trypanosoma brucei gambiense (T.b. gambiense). Its development cycle in the host vaires greatly, from a few months to several years. The acute form of the disease is brought on by Trypanosoma brucei rhodesiense (T.b. rhodesiense), in southern and eastern African countries. The infection it induces takes effect after a few weeks. More virulent than the chronic form, its development cycle is also more rapid and, consequently, clinical detection can be made earlier.

However, it is increasingly recognized that the existence of these two forms, the chronic one due to T. b. gambiense and the acute one provoked by T. b. rhodesiense, only partly reflect the real mechanisms at work. Concerning the Gambian form, the screening and treatment teams indicates the occurrence of several categories of subjects infected: some show Glossina fuscipes gorged with blood affected by classical chronic forms of the disease; others bear severe rapidly developing forms; still other people show no symptoms of human African trypanosomiasis, in spite of a long period of infection. This diversity in host clinical presentation in reaction to infection can have several sources: the host's ability to respond to infection, the degree of parasite virulence or pathogenicity and the environment.

An IRD team focused particularly on the role of host genetic diversity in response to T. b. gambiense infection (whether or not the disease develops). As human experimentation is excluded, genetic, epidemiological and statistical methods, all brought under the term genetic epidemiology, were developed in order to identify the chromosome regions and/or DNA mutations involved in the development of the disease. The researchers used association techniques in order to determine the influence of certain mutations on the DNA of genes coding for particular immune system proteins (cytokines) in manifestation of the disease. This type of study consists in comparing the frequency of a mutation in subjects with symptoms and in healthy individuals. When the frequency of a mutation is significantly higher in the sick subjects than in the healthy ones, this mutation is associated with an enhanced risk of developing the disease. Conversely, a significantly lower frequency is an expression of a protective effect conferred by the mutation.

The two studies conducted in two distinct foci of the disease, respectively at Sinfra in the Ivory Coast and at Bandundu in the Democratic Republic of Congo (1), revealed evidence of three associations between a DNA mutation and the development of the disease. Depending on their position on certain cytokines genes, the mutations investigated were shown to be capable of inducing in the subject carrying them an increased risk of developing this human trypanosomiasis, or conversely a higher chance of a protector effect (2).

The associations brought out between these mutations and the disease necessitate work to confirm this in different populations and environments. New investigations, particularly in genetic epidemiology, are currently being put into operation in order to check up on possible effects of genetic predisposition already observed. The results obtained will help improve our knowledge about host-parasite interactions, by means of identifying genetic markers signalling risk. That should open the way in the long term to possible development of innovative control strategies against sleeping sickness.

(1) The Ivory Coast study involved 200 subjects with the disease and 302 healthy subjects. The study carried out in the Democratic Republic of Congo investigated 353 subjects including 135 suffering from the infection.

(2) (2) The Ivory Coast study suggests that the individuals carrying mutation A (substitution of a cytosine base by an adenine), located at position -592 of the gene coding for Interleukin 10, had a smaller risk of developing the disease. However, subjects carrying two alleles with mutation at position -308 of the gene coding for the Tumor Necrosis Factor-a showed an increased risk of developing this trypanosomiasis, rapidly after exposure to the risk of infection. In the subjects from the Democratic Republic of Congo, mutation T (substitution of a cytosine base by a thymine) at position 4339 of the Interleukin 6 coding gene could confer a protection against development of the disease. A tendency towards the association was also observed between mutation T at position 5417 of the gene coding for Interleukin 1a and a higher risk of developing this sleeping sickness.

Aude Sonneville (DIC)/ David Courtin - IRD

Marie Guillaume-Signoret | EurekAlert!
Further information:
http://www.ird.fr

Further reports about: Chronic Disease Genetic Infection developing gambiense sleeping trypanosomiasis

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>