Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn researchers provide insights into how the immune system avoids attacking itself

16.10.2006
Discovery may have applications in cancer biology and autoimmune disease

A finding by University of Pennsylvania School of Medicine researchers about how immune cells "decide" to become active or inactive may have applications in fighting cancerous tumors, autoimmune diseases, and organ transplant rejection.

Pathology and Laboratory Medicine Professor Gary A. Koretzky, MD, PhD, director of the Signal Transduction Program at Penn's Abramson Family Cancer Research Institute describes, in the current issue of Nature Immunology, one way in which T cells may develop tolerance to host cells and proteins. Koretzky and colleagues found that small fatty acids called diacylglycerols (DAGs), and the enzymes that metabolize them, are critical players in the molecular pathway that leads to activity versus inactivity.

Immune cells called T lymphocytes recognize invaders in the body, such as viruses, bacteria, tumor cells, or allergens. Normally, T cells are activated by a complex series of signals that end with the destruction of the foreign substance. However, some T cells are not activated, in fact they are inactivated by a process called anergy or tolerance. This process helps prevent immune cells from attacking themselves and other normal cells and proteins.

... more about:
»DAGs »DGK »T cells »immune cell »invader »tolerant

"How T lymphocytes become activated or inactivated has been one of the major questions in the field of immunology," says senior author Koretzky. "Our discovery shows that DAGs are critical for T-cell activation so these cells can respond to foreign invaders. However, when DAGs are chemically modified by enzymes called diacylglycerol kinases, T cells become tolerant or unresponsive to foreign substances and to self."

The discovery was made by studying mice that had been engineered to lack diacylglycerol kinases (DGKs). Although T cells from these knock-out mice were normal in most respects the induction of tolerance was impaired. When DAGs could not be chemically altered because the DGKs were absent, the T cells were hyperreactive to foreign antigens and could not be made tolerant to host cells.

Hyperreactivity was shown when purified T cells from DGK knockout mice were stimulated by antigen in a culture dish. The failure of the T cells to become tolerant was demonstrated in experiments where mice were treated with a toxin from staphylococcal bacteria that should have induced unresponsiveness. Instead, the T cells produced about five times more of an immunity factor than did cells from normal mice.

The hyperreactive state, if controlled, might be beneficial to the body under some circumstances; for example, some T cells might be made more effective at eliminating tumors. The research team is continuing to study DGK knock-out mice to see if they are more resistant to tumors. If the hyper-reactive T cells in these mice recognize the tumor cell as a foreign invader, then the tumor might be eliminated or reduced. Conversely, if the tolerant state could be induced in a controlled manner, it might benefit individuals with autoimmune disease or help prevent rejection of transplants.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

Further reports about: DAGs DGK T cells immune cell invader tolerant

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>