Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Killing Resistant Germs

Total synthesis successful: Platensimycin, a new antibiotic

Although a number of new antibiotics have been discovered in recent decades, our armory against infection is continually being depleted, as our microscopically small enemies are crafty warriors that develop resistance to current antibiotics.

Multiresistant bacteria are a big problem, especially in hospitals. Already weakened patients are easy victims, for which an infection that cannot be treated with antibiotics can quickly become life-threatening. What is needed are active agents that act on completely different sites in the physiological sequence of pathogens than current medicaments. Platensimycin, recently isolated from the mushroom Streptomyces platensis, is such an agent. A Californian team of researchers is now the first to synthesize this natural product completely in the laboratory—a crucial step on the way to a new class of antibiotics.

Platensimycin inhibits an important step of bacterial fatty acid biosynthesis and in this way paralyzes a broad spectrum of Gram-positive bacterial strains. Thus, this natural product in able to kill dangerous germs that have developed resistance not only to established antibiotics but also to standby products. Examples of these include various resistant strains of Staphylococcus aureus and Enterococcus faecium.

... more about:
»antibiotic »natural »synthesis

To isolate a complex natural product in sufficient quantity and purity for further experiments is usually a difficult and time-consuming, if not impossible, task. Chemists thus follow a different path: They reproduce the natural product in the laboratory from the ground up. This approach is known as total synthesis. To devise such a total synthesis is an enormous scientific challenge. A way must be found to assemble a complicated synthetic molecule faultlessly from simple, available components—and in sufficiently high yield in each reaction step. The total synthesis of platensimycin has now been accomplished by a team headed by the renowned natural products chemist K. C. Nicolaou (The Scripps Research Institute, La Jolla, and University of California, San Diego). Platensimycin consists of an unusual aromatic ring coupled through an amide group to a compact cage structure. The team built these two components—each a veritable challenge for synthetic chemists—separately and then joined them in the final step of the synthesis. "The described chemistry," says Nicolaou, "sets the stage for the synthesis of designed analogues for structure–activity relationship studies in the search for new antibacterial agents."

K.C. Nicolaou, Ph.D. | EurekAlert!
Further information:

Further reports about: antibiotic natural synthesis

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>