Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Killing Resistant Germs

16.10.2006
Total synthesis successful: Platensimycin, a new antibiotic

Although a number of new antibiotics have been discovered in recent decades, our armory against infection is continually being depleted, as our microscopically small enemies are crafty warriors that develop resistance to current antibiotics.

Multiresistant bacteria are a big problem, especially in hospitals. Already weakened patients are easy victims, for which an infection that cannot be treated with antibiotics can quickly become life-threatening. What is needed are active agents that act on completely different sites in the physiological sequence of pathogens than current medicaments. Platensimycin, recently isolated from the mushroom Streptomyces platensis, is such an agent. A Californian team of researchers is now the first to synthesize this natural product completely in the laboratory—a crucial step on the way to a new class of antibiotics.

Platensimycin inhibits an important step of bacterial fatty acid biosynthesis and in this way paralyzes a broad spectrum of Gram-positive bacterial strains. Thus, this natural product in able to kill dangerous germs that have developed resistance not only to established antibiotics but also to standby products. Examples of these include various resistant strains of Staphylococcus aureus and Enterococcus faecium.

... more about:
»antibiotic »natural »synthesis

To isolate a complex natural product in sufficient quantity and purity for further experiments is usually a difficult and time-consuming, if not impossible, task. Chemists thus follow a different path: They reproduce the natural product in the laboratory from the ground up. This approach is known as total synthesis. To devise such a total synthesis is an enormous scientific challenge. A way must be found to assemble a complicated synthetic molecule faultlessly from simple, available components—and in sufficiently high yield in each reaction step. The total synthesis of platensimycin has now been accomplished by a team headed by the renowned natural products chemist K. C. Nicolaou (The Scripps Research Institute, La Jolla, and University of California, San Diego). Platensimycin consists of an unusual aromatic ring coupled through an amide group to a compact cage structure. The team built these two components—each a veritable challenge for synthetic chemists—separately and then joined them in the final step of the synthesis. "The described chemistry," says Nicolaou, "sets the stage for the synthesis of designed analogues for structure–activity relationship studies in the search for new antibacterial agents."

K.C. Nicolaou, Ph.D. | EurekAlert!
Further information:
http://www.scripps.edu

Further reports about: antibiotic natural synthesis

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>