Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NRC team uses new Quantum Technology to control molecules

13.10.2006
research team at the National Research Council Canada (Ottawa) has developed a new quantum technology which uses laser pulses to control quantum processes. The method, which is described in the October 13th web release by the world's leading scientific journal, Science, was illustrated by changing the outcome a chemical reaction.

Quantum technologies make use of the molecular scale properties of matter. At this scale, which is different from our everyday world, matter behaves according to the rules of quantum mechanics. Although the rules are well understood, the tools required to control quantum processes are still under development. Quantum technologies aim to manipulate molecular scale behaviour, in a way not usually seen in nature, for fundamentally new applications.

For example, methods to implement quantum information/computation (i.e. computers based upon quantum rules) are the subject of an international race to harness the power of this new technology. Another example of quantum technology is the control of chemical reactions using laser light, the example chosen by the NRC researchers to illustrate their new approach.

A chemical reaction, in which a starting molecule is converted to a product, follows path that seems to a molecule like a hill it must 'ski' down, as shown in the figure. Here a molecule would normally react by heading down the hill towards valley B. The NRC team describes an experiment that is analogous to the 'Labyrinth' game in which a player controls the tilt of a board in order to guide a steel ball through a maze of holes; in this case a molecular scale game. The knob the researchers used is an ultrafast laser pulse (shown here as a wiggly black arrow) which re-shapes the hill (or tilts the board) as the molecule is sliding down the slope, using an interaction called the Dynamic Stark Effect. In this molecular 'Labyrinth' game, the interaction deflects the reacting molecule towards valley A rather than valley B. The breaking of the chemical bond associated with this process is illustrated on the left. A key aspect of the NRC approach is that the molecule does not absorb the laser light during this re-shaping. The absorption of the laser light would be equivalent to moving the molecule to a different hill instead of tilting the one it is on. This would generally lead to products other than the A or B products indicated in the figure. The avoidance of light absorption is important because different molecules absorb different colours of light, so it is impossible to find an absorption method that works the same for all molecules. Thus, the new NRC method of 'tilting the hill', based on the Dynamic Stark Effect, should be applicable to control of a broad range of quantum processes.

... more about:
»NRC »Quantum »Technology »chemical reaction

According to Albert Stolow, the NRC team leader, the tool used to alter molecular landscapes has implications beyond the control of chemical reactions. One example already mentioned is in the area of quantum information either to directly encode molecular scale information or to control molecular scale switches. Another application is in developing novel forms of optical microscopy of live cells, where quantum control methods can be used to sharpen images, enhance sensitivity and perhaps even perform molecular scale surgery on individual cells. The electric interaction underlying the NRC technique is an essential tool on the quantum mechanic's workbench. Its application to science and technology could reach deep into the quantum world of the ultrasmall.

Dr. Albert Stolow | EurekAlert!
Further information:
http://www.nrc-cnrc.gc.ca

Further reports about: NRC Quantum Technology chemical reaction

More articles from Life Sciences:

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>