Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mayo discovers protein as potential tactic to prevent tumors

Mayo clinic cancer center researchers see CDK2/FOXO1 as drug target

Mayo Clinic researchers have found that a protein that initiates a "quality control check" during cell division also directs cell death for those cells damaged during duplication. This knowledge represents a potential "bulls eye" for targeting anti-tumor drugs. The findings appear in the current issue of Science.

The researchers examined a protein called cyclin-dependent kinase 2 (CDK2), which works as a "quality control inspector." As normal cells divide, they pause in the replication process when they find inaccurate genetic code embedded in their DNA. The health and well-being of offspring cells depends on accurate genetic code transfer from one generation of cells to the next. The Mayo researchers showed that when errors in genes are irreparable, CDK2 modifies another cellular protein -- FOXO1 -- to send a signal that results in the death of the cell. This protein-to-protein relationship invites targeted drug intervention to control unregulated growth of cancer cells.

"Quality control within dividing cells is essential because mistakes during duplication of the genetic code can lead to cancer," says Donald Tindall, Ph.D., co-leader of the Mayo Clinic Cancer Center prostate cancer research program. "CDK2 is a key protein component in the cellular mechanism that leads to repair of damaged DNA."

... more about:
»CDK2 »FOXO1 »Protein »Quality »genetic code

If cells pass this quality control checkpoint, they can resume the process of dividing into two daughter cells. If, however, major irreparable discrepancies occur in the genetic code, cells are shunted toward a molecular sequence that leads to death, or apoptosis. Cells have the genetic knowledge to sacrifice themselves for the greater good of the organism rather than to pass on errant genetic codes that can lead to disease. Genetic errors that sneak past the cell's quality control check-points can make the cell prone to develop into cancer.

How It Happens

The Mayo researchers documented that CDK2 infuses high energy into another cellular protein, FOXO1, switching it on as the initial link in a signal that tells the cell to set itself up for apoptosis. CDK2 adds phosphorylation to a specific serine residue on the chain of amino acids that make up FOXO1. In case of robust errors found in the genetic code, CDK2 signals FOXO1 to explicitly call for the cell to produce a set of proteins leading to apoptosis.

"If the cell has minor alterations in the DNA code that can be repaired, those repairs are made," says first author Haojie Huang, Ph.D. "If the genetic message cannot be repaired, our studies show that CDK2 can initiate the steps necessary for cells to order the production of genes involved with cell death, and the errant cell dies without propagating its damaging genetic message to progeny cells of its own."

"As patients and their physicians seek to control or cure tumors, research is providing new approaches to limiting cancer from growing and spreading," Dr. Tindall said. "With this new understanding of the biology driven by critical dual functions of CDK2, the cancer community can focus on ways to regulate a mechanism that the cell contains to prevent damaged genetic messages from being inherited and spread in proliferating tumor cells."

Robert Nellis | EurekAlert!
Further information:

Further reports about: CDK2 FOXO1 Protein Quality genetic code

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>