Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo discovers protein as potential tactic to prevent tumors

13.10.2006
Mayo clinic cancer center researchers see CDK2/FOXO1 as drug target

Mayo Clinic researchers have found that a protein that initiates a "quality control check" during cell division also directs cell death for those cells damaged during duplication. This knowledge represents a potential "bulls eye" for targeting anti-tumor drugs. The findings appear in the current issue of Science.

The researchers examined a protein called cyclin-dependent kinase 2 (CDK2), which works as a "quality control inspector." As normal cells divide, they pause in the replication process when they find inaccurate genetic code embedded in their DNA. The health and well-being of offspring cells depends on accurate genetic code transfer from one generation of cells to the next. The Mayo researchers showed that when errors in genes are irreparable, CDK2 modifies another cellular protein -- FOXO1 -- to send a signal that results in the death of the cell. This protein-to-protein relationship invites targeted drug intervention to control unregulated growth of cancer cells.

"Quality control within dividing cells is essential because mistakes during duplication of the genetic code can lead to cancer," says Donald Tindall, Ph.D., co-leader of the Mayo Clinic Cancer Center prostate cancer research program. "CDK2 is a key protein component in the cellular mechanism that leads to repair of damaged DNA."

... more about:
»CDK2 »FOXO1 »Protein »Quality »genetic code

If cells pass this quality control checkpoint, they can resume the process of dividing into two daughter cells. If, however, major irreparable discrepancies occur in the genetic code, cells are shunted toward a molecular sequence that leads to death, or apoptosis. Cells have the genetic knowledge to sacrifice themselves for the greater good of the organism rather than to pass on errant genetic codes that can lead to disease. Genetic errors that sneak past the cell's quality control check-points can make the cell prone to develop into cancer.

How It Happens

The Mayo researchers documented that CDK2 infuses high energy into another cellular protein, FOXO1, switching it on as the initial link in a signal that tells the cell to set itself up for apoptosis. CDK2 adds phosphorylation to a specific serine residue on the chain of amino acids that make up FOXO1. In case of robust errors found in the genetic code, CDK2 signals FOXO1 to explicitly call for the cell to produce a set of proteins leading to apoptosis.

"If the cell has minor alterations in the DNA code that can be repaired, those repairs are made," says first author Haojie Huang, Ph.D. "If the genetic message cannot be repaired, our studies show that CDK2 can initiate the steps necessary for cells to order the production of genes involved with cell death, and the errant cell dies without propagating its damaging genetic message to progeny cells of its own."

"As patients and their physicians seek to control or cure tumors, research is providing new approaches to limiting cancer from growing and spreading," Dr. Tindall said. "With this new understanding of the biology driven by critical dual functions of CDK2, the cancer community can focus on ways to regulate a mechanism that the cell contains to prevent damaged genetic messages from being inherited and spread in proliferating tumor cells."

Robert Nellis | EurekAlert!
Further information:
http://www.mayo.edu

Further reports about: CDK2 FOXO1 Protein Quality genetic code

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>