Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo discovers protein as potential tactic to prevent tumors

13.10.2006
Mayo clinic cancer center researchers see CDK2/FOXO1 as drug target

Mayo Clinic researchers have found that a protein that initiates a "quality control check" during cell division also directs cell death for those cells damaged during duplication. This knowledge represents a potential "bulls eye" for targeting anti-tumor drugs. The findings appear in the current issue of Science.

The researchers examined a protein called cyclin-dependent kinase 2 (CDK2), which works as a "quality control inspector." As normal cells divide, they pause in the replication process when they find inaccurate genetic code embedded in their DNA. The health and well-being of offspring cells depends on accurate genetic code transfer from one generation of cells to the next. The Mayo researchers showed that when errors in genes are irreparable, CDK2 modifies another cellular protein -- FOXO1 -- to send a signal that results in the death of the cell. This protein-to-protein relationship invites targeted drug intervention to control unregulated growth of cancer cells.

"Quality control within dividing cells is essential because mistakes during duplication of the genetic code can lead to cancer," says Donald Tindall, Ph.D., co-leader of the Mayo Clinic Cancer Center prostate cancer research program. "CDK2 is a key protein component in the cellular mechanism that leads to repair of damaged DNA."

... more about:
»CDK2 »FOXO1 »Protein »Quality »genetic code

If cells pass this quality control checkpoint, they can resume the process of dividing into two daughter cells. If, however, major irreparable discrepancies occur in the genetic code, cells are shunted toward a molecular sequence that leads to death, or apoptosis. Cells have the genetic knowledge to sacrifice themselves for the greater good of the organism rather than to pass on errant genetic codes that can lead to disease. Genetic errors that sneak past the cell's quality control check-points can make the cell prone to develop into cancer.

How It Happens

The Mayo researchers documented that CDK2 infuses high energy into another cellular protein, FOXO1, switching it on as the initial link in a signal that tells the cell to set itself up for apoptosis. CDK2 adds phosphorylation to a specific serine residue on the chain of amino acids that make up FOXO1. In case of robust errors found in the genetic code, CDK2 signals FOXO1 to explicitly call for the cell to produce a set of proteins leading to apoptosis.

"If the cell has minor alterations in the DNA code that can be repaired, those repairs are made," says first author Haojie Huang, Ph.D. "If the genetic message cannot be repaired, our studies show that CDK2 can initiate the steps necessary for cells to order the production of genes involved with cell death, and the errant cell dies without propagating its damaging genetic message to progeny cells of its own."

"As patients and their physicians seek to control or cure tumors, research is providing new approaches to limiting cancer from growing and spreading," Dr. Tindall said. "With this new understanding of the biology driven by critical dual functions of CDK2, the cancer community can focus on ways to regulate a mechanism that the cell contains to prevent damaged genetic messages from being inherited and spread in proliferating tumor cells."

Robert Nellis | EurekAlert!
Further information:
http://www.mayo.edu

Further reports about: CDK2 FOXO1 Protein Quality genetic code

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>