Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Uncover a Novel Mechanism of Action of a Potential New Drug for the Treatment of Multiple Sclerosis

13.10.2006
Virginia Commonwealth University researchers have identified a unique mechanism of action of a new drug that shows great promise for the treatment of multiple sclerosis.

The researchers report the unique action of FTY720, or Fingolimod, an immunosuppressant drug that was already known to affect the functioning of the immune system by preventing the egress of white blood cells from the lymph nodes into the blood. The article was pre-published as a First Edition Paper in Blood, The Journal of the American Society of Hematology, which appeared online on Sept. 28.

In this study, the research team observed that FTY720 also inhibited the activity of a key enzyme called cPLA2, which is necessary for the production of inflammatory mediators, known as eicosanoids. Eicosanoids drive inflammatory disorders such as asthma and multiple sclerosis.

According to Sarah Spiegel, Ph.D., professor and chair in the VCU Department of Biochemistry, and lead author on the study, the inhibition of cPLA2 would shut down the entire inflammatory pathway, possibly without the side-effects caused by medications such as Vioxx, that have been withdrawn from the pharmaceutical market.

... more about:
»Biochemistry »FTY720 »VCU »action

FTY720, a drug developed by Novartis, has shown considerable therapeutic effects in a recent small, placebo-controlled clinical trial involving patients with relapsing multiple sclerosis. The study was published in the September 2006 issue of the New England Journal of Medicine by an international research team. With its novel mode of action and the added benefit of an oral formulation, further clinical development of FTY720 might have a major impact on treatment of MS, said Spiegel.

"By clearly understanding the mechanism of action of drugs such as FTY720, we can develop more optimal treatments for inflammatory disease such as asthma or MS. This drug may prevent both inflammation and axonal damage, including demyelination, which are characteristic of MS," said Spiegel.

This work was supported by grants from the National Institutes of Health, and the National Science Foundation.

The research team included Shawn G. Payne, Ph.D., a researcher in the VCU Department of Biochemistry, who made the discovery of the novel actions of this drug; researchers Carole A. Oskeritzian, Ph.D., Rachael Griffiths, Preeti Subramanian, all in the VCU Department of Biochemistry; Suzanne E. Barbour, Ph.D., and Charles E. Chalfant, Ph.D., both professors in the VCU Department of Biochemistry who contributed vital reagents and expertise; and Sheldon Milstien, Ph.D., a neuroscientist with the NIH.

Sathya Achia-Abraham | EurekAlert!
Further information:
http://www.vcu.edu
http://www.hematology.org

Further reports about: Biochemistry FTY720 VCU action

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>