Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Find Smallest Cellular Genome

13.10.2006
The smallest collection of genes ever found for a cellular organism comes from tiny symbiotic bacteria that live inside special cells inside a small insect.

The bacteria Carsonella ruddii has the fewest genes of any cell. The bacteria's newly sequenced genome, the complete set of DNA for the organism, is only one-third the size of the previously reported "smallest" cellular genome.

"It's the smallest genome -- not by a bit but by a long way," said co-author Nancy A. Moran, UA Regents' Professor of ecology and evolutionary biology and a member of the National Academy of Sciences. "It's very surprising. It's unbelievable, really. We would not have predicted such a small size. It's believed that more genes are required for a cell to work."

Carsonella ruddii has only 159,662 base-pairs of DNA, which translates to only 182 protein-coding genes, reports a team of scientists from The University of Arizona in Tucson and from Japan.

... more about:
»DNA »Evolution »Moran »endosymbiont

The finding provides new insights into bacterial evolution, the scientists write in the Oct. 13 issue of the journal Science.

Atsushi Nakabachi, a postdoctoral research associate in UA's department of ecology and evolutionary biology and a visiting scientist at RIKEN in Wako, Japan, is the first author on the research report, "The 160-kilobase genome of the bacterial endosymbiont Carsonella." The research was conducted in senior author Masahira Hattori's laboratory in Japan and in Moran's lab at the UA.

A complete list of authors is at the bottom of this release. The Ministry of Education, Culture, Sports, Science and Technology of Japan funded the work.

Many insects feed on plant sap, a nutrient-poor diet. To get a balanced diet, some sap-feeders rely on resident bacteria. The bacteria manufacture essential nutrients, particularly amino acids, and share the goodies with their hosts.

In many such associations, the bacteria live within the insect's cells and cannot survive on their own. Often the insect host cannot survive without its bacteria, known as endosymbionts.

The relationship between some insects and their endosymbionts is so close and so ancient that the insects house their resident bacteria in special cells called bacteriocytes within specialized structures called bacteriomes.

Studying the genomes of such endosymbionts can provide clues to how microorganisms' metabolic capabilities contribute to both their hosts and to biological communities.

An organism's genome, its complete complement of DNA, provides the operating instructions for everything the organism needs to do to survive and reproduce.

Endosymbiotic bacteria live in an extremely sheltered world and have a pared-down lifestyle, so they need a simpler set of instructions. Many of the metabolic pathways that free-living bacteria maintain have been lost after so many generations of living within insects.

Nakabachi and Hattori were interested in sequencing the genome of the bacteria Carsonella.

Moran had done some previous work on the Carsonella genome and found its DNA composition and evolution to be unusual. She suggested the team pursue the Carsonella that lived inside an Arizona psyllid insect called Pachypsylla venusta. The insect has only one species of endosymbiotic bacteria, which would simplify the genomic analysis.

The researchers collected Pachypsylla venusta psyllids from hackberry trees on the UA campus and around Tucson. The team extracted the Carsonella DNA and sequenced it.

Even though endosymbionts need fewer operating instructions to survive, the bacteria's itsy bitsy genome was a surprise.

"It lost genes that are considered absolutely necessary. Trying to explain it will probably help reveal how cells can work," said Moran, who is a member of UA's BIO5 Institute.

The scientists speculate that in the bacteria's evolutionary past, some of its genes were transferred into the insect's genome, allowing the insect to make some of the metabolites the bacteria needed. Once the insect shouldered those responsibilities and provided the bacteria with those metabolites, the bacteria lost those genes.

Animal and plant cells have specialized structures inside them called organelles that are derived from symbiotic bacteria that became incorporated into the cell over the course of evolution.

Carsonella's stripped-down genome may indicate that it is on its way to becoming an organelle, the researchers write in their article.

Authors on the paper are:

Atsushi Nakabachi of the UA and RIKEN; Helen E. Dunbar and Nancy A. Moran of the UA; Atsushi Yamashita and Hidehiro Toh of Kitasato University in Sagamihara, Japan; Hajime Ishikawa of The University of the Air in Mihama, Japan; and Masahira Hattori of The University of Tokyo in Kashiwa, Japan and RIKEN Genomic Sciences Center in Yokohama, Japan.

Mari N. Jensen | University of Arizona
Further information:
http://www.arizona.edu
http://genome.ls.kitasato-u.ac.jp/
http://www.bio5.org/

Further reports about: DNA Evolution Moran endosymbiont

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>