Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Find Smallest Cellular Genome

13.10.2006
The smallest collection of genes ever found for a cellular organism comes from tiny symbiotic bacteria that live inside special cells inside a small insect.

The bacteria Carsonella ruddii has the fewest genes of any cell. The bacteria's newly sequenced genome, the complete set of DNA for the organism, is only one-third the size of the previously reported "smallest" cellular genome.

"It's the smallest genome -- not by a bit but by a long way," said co-author Nancy A. Moran, UA Regents' Professor of ecology and evolutionary biology and a member of the National Academy of Sciences. "It's very surprising. It's unbelievable, really. We would not have predicted such a small size. It's believed that more genes are required for a cell to work."

Carsonella ruddii has only 159,662 base-pairs of DNA, which translates to only 182 protein-coding genes, reports a team of scientists from The University of Arizona in Tucson and from Japan.

... more about:
»DNA »Evolution »Moran »endosymbiont

The finding provides new insights into bacterial evolution, the scientists write in the Oct. 13 issue of the journal Science.

Atsushi Nakabachi, a postdoctoral research associate in UA's department of ecology and evolutionary biology and a visiting scientist at RIKEN in Wako, Japan, is the first author on the research report, "The 160-kilobase genome of the bacterial endosymbiont Carsonella." The research was conducted in senior author Masahira Hattori's laboratory in Japan and in Moran's lab at the UA.

A complete list of authors is at the bottom of this release. The Ministry of Education, Culture, Sports, Science and Technology of Japan funded the work.

Many insects feed on plant sap, a nutrient-poor diet. To get a balanced diet, some sap-feeders rely on resident bacteria. The bacteria manufacture essential nutrients, particularly amino acids, and share the goodies with their hosts.

In many such associations, the bacteria live within the insect's cells and cannot survive on their own. Often the insect host cannot survive without its bacteria, known as endosymbionts.

The relationship between some insects and their endosymbionts is so close and so ancient that the insects house their resident bacteria in special cells called bacteriocytes within specialized structures called bacteriomes.

Studying the genomes of such endosymbionts can provide clues to how microorganisms' metabolic capabilities contribute to both their hosts and to biological communities.

An organism's genome, its complete complement of DNA, provides the operating instructions for everything the organism needs to do to survive and reproduce.

Endosymbiotic bacteria live in an extremely sheltered world and have a pared-down lifestyle, so they need a simpler set of instructions. Many of the metabolic pathways that free-living bacteria maintain have been lost after so many generations of living within insects.

Nakabachi and Hattori were interested in sequencing the genome of the bacteria Carsonella.

Moran had done some previous work on the Carsonella genome and found its DNA composition and evolution to be unusual. She suggested the team pursue the Carsonella that lived inside an Arizona psyllid insect called Pachypsylla venusta. The insect has only one species of endosymbiotic bacteria, which would simplify the genomic analysis.

The researchers collected Pachypsylla venusta psyllids from hackberry trees on the UA campus and around Tucson. The team extracted the Carsonella DNA and sequenced it.

Even though endosymbionts need fewer operating instructions to survive, the bacteria's itsy bitsy genome was a surprise.

"It lost genes that are considered absolutely necessary. Trying to explain it will probably help reveal how cells can work," said Moran, who is a member of UA's BIO5 Institute.

The scientists speculate that in the bacteria's evolutionary past, some of its genes were transferred into the insect's genome, allowing the insect to make some of the metabolites the bacteria needed. Once the insect shouldered those responsibilities and provided the bacteria with those metabolites, the bacteria lost those genes.

Animal and plant cells have specialized structures inside them called organelles that are derived from symbiotic bacteria that became incorporated into the cell over the course of evolution.

Carsonella's stripped-down genome may indicate that it is on its way to becoming an organelle, the researchers write in their article.

Authors on the paper are:

Atsushi Nakabachi of the UA and RIKEN; Helen E. Dunbar and Nancy A. Moran of the UA; Atsushi Yamashita and Hidehiro Toh of Kitasato University in Sagamihara, Japan; Hajime Ishikawa of The University of the Air in Mihama, Japan; and Masahira Hattori of The University of Tokyo in Kashiwa, Japan and RIKEN Genomic Sciences Center in Yokohama, Japan.

Mari N. Jensen | University of Arizona
Further information:
http://www.arizona.edu
http://genome.ls.kitasato-u.ac.jp/
http://www.bio5.org/

Further reports about: DNA Evolution Moran endosymbiont

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>