Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Comparing Chimp and Human DNA

13.10.2006
Scientists look to the chimpanzee genome to better understand what is uniquely human about our own. One goal is to find DNA elements that show evidence of rapid evolution in the human lineage.

In a new study, published online in the open-access journal PLoS Genetics, Katherine Pollard, at the UC Davis Genome Center, and colleagues at UC Santa Cruz led by David Haussler used comparative genomics to investigate the properties of a set of 202 carefully screened “highly accelerated regions” (HARs).

The authors searched for stretches of DNA that were highly conserved between chimpanzees, mice, and rats, comparing those sequences to the human genome sequence in order to unravel the evolutionary forces at work behind the human genome’s fastest evolving regions.

Pollard explains that “most of the differences between chimps and humans are not in our proteins, but in how we use them.” Only three HARs lie in genes that are likely to encode proteins. The rest do not appear to code for genes at all; instead, many HARs are located close to genes involved in growth and development. The most dramatically accelerated region, HAR1, appears to make a piece of RNA that may have a function in brain development.

... more about:
»DNA »HARs »genes

“They’re not in genes, but they’re near genes that do some very important stuff,” Pollard said. Typically, non-coding regions of DNA evolve more rapidly than regions carrying genes because there is no selective pressure to stop mutations from accumulating. However, the human-accelerated regions are highly conserved across the other groups of animals that the researchers examined, suggesting that they have important functions that stop them from varying too much.

This study was funded by the National Institutes of Health and the Howard Hughes Medical Institute.

Katherine Pollard | alfa
Further information:
http://www.plosgenetics.org
http://www.ucdavis.edu

Further reports about: DNA HARs genes

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>