Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Comparing Chimp and Human DNA

13.10.2006
Scientists look to the chimpanzee genome to better understand what is uniquely human about our own. One goal is to find DNA elements that show evidence of rapid evolution in the human lineage.

In a new study, published online in the open-access journal PLoS Genetics, Katherine Pollard, at the UC Davis Genome Center, and colleagues at UC Santa Cruz led by David Haussler used comparative genomics to investigate the properties of a set of 202 carefully screened “highly accelerated regions” (HARs).

The authors searched for stretches of DNA that were highly conserved between chimpanzees, mice, and rats, comparing those sequences to the human genome sequence in order to unravel the evolutionary forces at work behind the human genome’s fastest evolving regions.

Pollard explains that “most of the differences between chimps and humans are not in our proteins, but in how we use them.” Only three HARs lie in genes that are likely to encode proteins. The rest do not appear to code for genes at all; instead, many HARs are located close to genes involved in growth and development. The most dramatically accelerated region, HAR1, appears to make a piece of RNA that may have a function in brain development.

... more about:
»DNA »HARs »genes

“They’re not in genes, but they’re near genes that do some very important stuff,” Pollard said. Typically, non-coding regions of DNA evolve more rapidly than regions carrying genes because there is no selective pressure to stop mutations from accumulating. However, the human-accelerated regions are highly conserved across the other groups of animals that the researchers examined, suggesting that they have important functions that stop them from varying too much.

This study was funded by the National Institutes of Health and the Howard Hughes Medical Institute.

Katherine Pollard | alfa
Further information:
http://www.plosgenetics.org
http://www.ucdavis.edu

Further reports about: DNA HARs genes

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>