Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Caterpillars tell us how bacteria cause disease

13.10.2006
Caterpillars and other invertebrates are helping to provide a cheap, easy and safe way to identify the genes which help bacteria cause infections in humans.

Researchers from the University of Bath have discovered a way to sort through large numbers of bacterial gene sequences by testing them in caterpillars to see how their immune systems respond. This new technique known as Rapid Virulence Annotation (RVA) allows them to pinpoint the genes which code for virulence.

With millions of species worldwide, insects provide a massive pool of hosts for bacterial diseases. The immune system of insects is very similar to the inborn immune system of mammals. By living first in insects some bacteria have evolved to survive immune system attack, so when they invade mammals they are equipped to deal with their immune system response and are able to spread rapidly. It is thought this is how bacteria, such as Yersinia pestis – the cause of plague, could have evolved to wreak havoc in humans.

Dr Nick Waterfield, who is leading the study, explained: “Bacteria have been interacting with simple animals such as amoeba and insects for a staggering length of evolutionary time. It seems likely that most virulence genes around today probably first evolved to work against these hosts”.

With funding from the Biotechnology and Biological Sciences Research Council’s (BBSRC) Exploiting Genomics Initiative, Dr Waterfield and his team are using the similarities between insect immune systems and animal immune systems to their advantage by developing RVA - a new way to investigate the genetic basis of ‘virulence’ factors in insect pathogens. Instead of looking at the whole genome – which codes for the entire bacteria, Dr Waterfield’s team fragment the genome and insert different genes into a harmless laboratory bacterium which they then insert into caterpillars and other invertebrates to study their immune response.

“We are very excited by the opportunities that we can now explore thanks to this new method. It has given us a cheap and easy way of mapping bacterial virulence factors across an entire genome. This will allow us to rapidly and inexpensively bridge the enormous knowledge gap that has grown in the post-genomic era where it has become possible to sequence a whole bacterial genome without necessarily knowing the biological function of individual genes,” Dr Waterfield said.

His study focuses on bacteria called Photorhabdus asymbiotica which is known to infect both insects and humans. Dr Waterfield and his team have fragmented the genome for this bacteria and created a DNA library of over 1,500 separate cloned fragments – which covers most of the genome. They then inject the clones into Tobacco Hawkmoth Caterpillars to study the effects.

Their work has shown that clones containing harmless genetic material are recognised and destroyed by the caterpillar’s immune system while clones which contain genes which encode for virulence factors survive immune attack.

“This work has several fruitful outcomes,” according to Dr Waterfield. “Not only does using this approach reveal ‘cryptic’ virulence genes, which ordinarily might be masked by more potent factors (when dealing with the whole bacterium), but by using insects instead it will also help reduce the number of mammals, such as rats and mice, needed in future genomics research. It also provides a safer method for researchers working with dangerous strains of bacteria as they are working with fragments rather than the whole bacteria.”

The next stage of Dr Waterfield’s work will involve working with other research teams across the UK to screen other harmful bacteria using RVA in an attempt to identify genes which could be possible vaccine targets to prevent disease outbreaks in the future.

Professor Julia Goodfellow, BBSRC Chief Executive, said: “This sort of genomics research is crucial in moving forward our understanding of evolution and could have a major impact on healthcare in the future.”

Matt Goode | alfa
Further information:
http://www.bbsrc.ac.uk

Further reports about: Waterfield bacteria bacterial immune system virulence whole

More articles from Life Sciences:

nachricht Historical rainfall levels are significant in carbon emissions from soil
30.05.2017 | University of Texas at Austin

nachricht 3D printer inks from the woods
30.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>