Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Caterpillars tell us how bacteria cause disease

13.10.2006
Caterpillars and other invertebrates are helping to provide a cheap, easy and safe way to identify the genes which help bacteria cause infections in humans.

Researchers from the University of Bath have discovered a way to sort through large numbers of bacterial gene sequences by testing them in caterpillars to see how their immune systems respond. This new technique known as Rapid Virulence Annotation (RVA) allows them to pinpoint the genes which code for virulence.

With millions of species worldwide, insects provide a massive pool of hosts for bacterial diseases. The immune system of insects is very similar to the inborn immune system of mammals. By living first in insects some bacteria have evolved to survive immune system attack, so when they invade mammals they are equipped to deal with their immune system response and are able to spread rapidly. It is thought this is how bacteria, such as Yersinia pestis – the cause of plague, could have evolved to wreak havoc in humans.

Dr Nick Waterfield, who is leading the study, explained: “Bacteria have been interacting with simple animals such as amoeba and insects for a staggering length of evolutionary time. It seems likely that most virulence genes around today probably first evolved to work against these hosts”.

With funding from the Biotechnology and Biological Sciences Research Council’s (BBSRC) Exploiting Genomics Initiative, Dr Waterfield and his team are using the similarities between insect immune systems and animal immune systems to their advantage by developing RVA - a new way to investigate the genetic basis of ‘virulence’ factors in insect pathogens. Instead of looking at the whole genome – which codes for the entire bacteria, Dr Waterfield’s team fragment the genome and insert different genes into a harmless laboratory bacterium which they then insert into caterpillars and other invertebrates to study their immune response.

“We are very excited by the opportunities that we can now explore thanks to this new method. It has given us a cheap and easy way of mapping bacterial virulence factors across an entire genome. This will allow us to rapidly and inexpensively bridge the enormous knowledge gap that has grown in the post-genomic era where it has become possible to sequence a whole bacterial genome without necessarily knowing the biological function of individual genes,” Dr Waterfield said.

His study focuses on bacteria called Photorhabdus asymbiotica which is known to infect both insects and humans. Dr Waterfield and his team have fragmented the genome for this bacteria and created a DNA library of over 1,500 separate cloned fragments – which covers most of the genome. They then inject the clones into Tobacco Hawkmoth Caterpillars to study the effects.

Their work has shown that clones containing harmless genetic material are recognised and destroyed by the caterpillar’s immune system while clones which contain genes which encode for virulence factors survive immune attack.

“This work has several fruitful outcomes,” according to Dr Waterfield. “Not only does using this approach reveal ‘cryptic’ virulence genes, which ordinarily might be masked by more potent factors (when dealing with the whole bacterium), but by using insects instead it will also help reduce the number of mammals, such as rats and mice, needed in future genomics research. It also provides a safer method for researchers working with dangerous strains of bacteria as they are working with fragments rather than the whole bacteria.”

The next stage of Dr Waterfield’s work will involve working with other research teams across the UK to screen other harmful bacteria using RVA in an attempt to identify genes which could be possible vaccine targets to prevent disease outbreaks in the future.

Professor Julia Goodfellow, BBSRC Chief Executive, said: “This sort of genomics research is crucial in moving forward our understanding of evolution and could have a major impact on healthcare in the future.”

Matt Goode | alfa
Further information:
http://www.bbsrc.ac.uk

Further reports about: Waterfield bacteria bacterial immune system virulence whole

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>