Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNH Researcher Uncovering Mysteries Of Memory By Studying Clever Bird

12.10.2006
Keeping track of one set of keys is difficult enough, but imagine having to remember the locations of thousands of sets of keys. Do you use landmarks to remember where you put them? Do you have a mental map of their locations?

Scientists at the University of New Hampshire hope to learn more about memory and its evolution by studying the Clark’s nutcracker, a bird with a particularly challenging task: remembering where it buried its supply of food for winter in a 15-mile area. Like many animals preparing for the winter, every fall the Clark’s nutcracker spends several weeks gathering food stores. What makes it unique is that it harvests more than 30,000 pine nuts, buries them in up to 5,000 caches, and then relies almost solely on its memory of where those caches are located to survive through winter.

Brett Gibson, a scientist studying animal behavior, began studying Clark’s nutcrackers in graduate school and is continuing his research into memory and the behavior of nutcrackers as an assistant professor in UNH’s psychology department.

“Nutcrackers are almost exclusively dependent upon cache recovery for their survival so if they don’t remember where they’ve made those caches, then they are in trouble,” Gibson says. “During winter, their cache locations are covered with snow so many of the small local features in the landscape during fall are no longer available to them. What’s clear is that they are using spatial memory to recover these caches. They are remembering these caches based on landmarks and other features of the terrain.”

... more about:
»Clark’s »Gibson »Landmark »nutcracker »reckoning »spatial

The study of memory is important for several reasons. It helps us understand how memory develops and evolves. It teaches us about how we and other species successfully navigate using memory. It provides insights across species about brain function and the hippocampus, a part of the brain important for memory and one of the first regions of the brain to suffer damage in Alzheimer’s patients.

“For us it would probably be very difficult to remember where we put 33,000 items, but these guys do it really well because of the environment they live in,” Gibson says. “It’s a problem evolution has solved by developing this very good memory for spatial information.”

Clark’s nutcrackers are native to the upper elevations of western North America, such as the Colorado Rocky Mountains. They are a member of the corvid family, which also includes blue jays and crows that are native to New England.

Gibson was part of an initial program of research focused on studying the Clark’s nutcracker’s spatial memory and how it compared to other members of the corvid family. That research has found that nutcrackers have a better spatial memory compared to related birds that are not as dependent upon the recovery of food caches during the winter for their survival.

His most recent research with the Clark’s nutcracker looks at the nature of the spatial cues specified by memory – how the bird uses these cues to find its food caches. “How do they use landmarks? What information do they remember about these landmarks? Are they using just one landmark as a beacon? Do they remember multiple landmarks and the geometrical relationship between those landmarks and the goal location?” Gibson says.

“These pine seeds are very small and these caches are very small so they have to be very accurate about how they use these landmarks to remember those cache locations,” he says.

One way that nutcrackers might solve the problem of returning to their caches is by developing a mental map of landmarks in their environment and recalling the location of the caches relative to the landmarks in the map. If they do have a map then they might be able to plan efficient routes to get from one cache site to the next – a problem called the Traveling Salesman Problem.

“Some mathematicians love this problem. We were interested in seeing how efficiently a non-human animal could solve it so we looked at pigeons. They were actually pretty very good at it so we’re going to start looking at the same problem with nutcrackers,” Gibson says. “We think they may be even better because nutcrackers have all of these places they have to travel in their environment; you might expect them to be very efficient in terms of where they travel.”

Gibson, in collaboration with his graduate student Tyler Wilks, also is looking at whether the birds use another navigational strategy in finding their food -- dead reckoning, part of an internal sense of direction. Dead reckoning integrates awareness of direction and distance traveled in order to return to a previous location; no landmarks are used.

“As humans we rely on landmarks a lot so we don’t think a lot about dead reckoning. But when you get lost in a forest and there aren’t a lot of familiar landmarks, your dead reckoning system kicks in and you try to determine the direction from which you came,” he says.

Investigations of dead reckoning in Clark’s nutcrackers have been limited, although it has been explored in other animals, from ants to primates. “We suspect it might play an important role because they have this great demand for remembering locations in the environment,” Gibson says.

Gibson also is interested in how animals create tools such as hooks and barbs out of items like twigs and branches, and use them to find food. “The Clark’s nutcracker being a member of the corvid family might be quite good at understanding some of the physical relationships involved in solving problems that require using tools,” he says.

Brett Gibson | EurekAlert!
Further information:
http://www.unh.edu
http://www.unh.edu/news/img/unh_nutcracker.jpg

Further reports about: Clark’s Gibson Landmark nutcracker reckoning spatial

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>