Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HIV gets a makeover: A few adjustments to the AIDS virus could alter the course of research

12.10.2006
The slow pace of AIDS research can be pinned, in no small part, on something akin to the square-peg-round-hole conundrum. The HIV-1 virus won’t replicate in monkey cells, so researchers use a monkey virus — known as SIVmac, or the macaque version of simian immunodeficiency virus — to test potential therapies and vaccines in animals.

But therapies and vaccines that are effective on SIV don’t necessarily translate into human success. Now, using a combination of genetic engineering and forced adaptation, researchers at Rockefeller and the Aaron Diamond AIDS Research Center have created a version of the AIDS virus that replicates vigorously in both human and monkey cells — an advance that has the potential to revolutionize vaccine research.

In a paper published in today’s issue of Science, Paul Bieniasz, associate professor and head of the Laboratory of Retrovirology, describes how he and his colleagues maneuvered around the intrinsic immunity of primate cells by replacing just a few parts of the human virus — the ones responsible for blocking replication in monkey cells — with components from SIV. “Overall, the virus is a mixture of engineering and forced evolution,” Bieniasz says. “It sounds simple, in theory, but it took us two years to do.”

Bieniasz and Theodora Hatziioannou, a research scientist in the lab and the paper’s first author, had to overcome two major obstacles: the first was a protein called TRIM5 that, in monkeys, recognizes the outer shell or “capsid” of HIV-1 but not that of SIV. By swapping out the capsid region of the HIV-1 genome for that of the monkey virus, and then selectively growing the viruses that replicated most robustly, over several generations Hatziioannou created an HIV-1 mutant that could evade the monkey cells’ TRIM5 recognition.

... more about:
»Aids »HIV »HIV-1 »SIV »Vaccine

Another bit of engineering was required to get around the second obstacle: APOBEC proteins produced by a host normally cause invading viruses to mutate so much that they can’t survive, but HIV-1 uses a protein called Vif to destroy APOBEC and prevent the attack. Monkey APOBEC proteins, however, aren’t susceptible to the human virus’s Vif. So Hatziioannou did another swap — the SIV Vif gene for the HIV one — and then another round of forced adaptation to create viruses that would multiply with vigor.

The researchers dubbed their end result simian tropic HIV (stHIV): a form of HIV-1 that only differs from the original by about 10 percent, but can effectively infect primate cells and be used to test potential therapies. “If we can make this virus work in animals the way it works in tissue culture, it will likely change the way that AIDS vaccine and therapeutics research is done,” Bieniasz says.

Kristine Kelly | EurekAlert!
Further information:
http://www.rockefeller.edu
http://newswire.rockefeller.edu/?page=engine&id=537

Further reports about: Aids HIV HIV-1 SIV Vaccine

More articles from Life Sciences:

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>