Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HIV gets a makeover: A few adjustments to the AIDS virus could alter the course of research

12.10.2006
The slow pace of AIDS research can be pinned, in no small part, on something akin to the square-peg-round-hole conundrum. The HIV-1 virus won’t replicate in monkey cells, so researchers use a monkey virus — known as SIVmac, or the macaque version of simian immunodeficiency virus — to test potential therapies and vaccines in animals.

But therapies and vaccines that are effective on SIV don’t necessarily translate into human success. Now, using a combination of genetic engineering and forced adaptation, researchers at Rockefeller and the Aaron Diamond AIDS Research Center have created a version of the AIDS virus that replicates vigorously in both human and monkey cells — an advance that has the potential to revolutionize vaccine research.

In a paper published in today’s issue of Science, Paul Bieniasz, associate professor and head of the Laboratory of Retrovirology, describes how he and his colleagues maneuvered around the intrinsic immunity of primate cells by replacing just a few parts of the human virus — the ones responsible for blocking replication in monkey cells — with components from SIV. “Overall, the virus is a mixture of engineering and forced evolution,” Bieniasz says. “It sounds simple, in theory, but it took us two years to do.”

Bieniasz and Theodora Hatziioannou, a research scientist in the lab and the paper’s first author, had to overcome two major obstacles: the first was a protein called TRIM5 that, in monkeys, recognizes the outer shell or “capsid” of HIV-1 but not that of SIV. By swapping out the capsid region of the HIV-1 genome for that of the monkey virus, and then selectively growing the viruses that replicated most robustly, over several generations Hatziioannou created an HIV-1 mutant that could evade the monkey cells’ TRIM5 recognition.

... more about:
»Aids »HIV »HIV-1 »SIV »Vaccine

Another bit of engineering was required to get around the second obstacle: APOBEC proteins produced by a host normally cause invading viruses to mutate so much that they can’t survive, but HIV-1 uses a protein called Vif to destroy APOBEC and prevent the attack. Monkey APOBEC proteins, however, aren’t susceptible to the human virus’s Vif. So Hatziioannou did another swap — the SIV Vif gene for the HIV one — and then another round of forced adaptation to create viruses that would multiply with vigor.

The researchers dubbed their end result simian tropic HIV (stHIV): a form of HIV-1 that only differs from the original by about 10 percent, but can effectively infect primate cells and be used to test potential therapies. “If we can make this virus work in animals the way it works in tissue culture, it will likely change the way that AIDS vaccine and therapeutics research is done,” Bieniasz says.

Kristine Kelly | EurekAlert!
Further information:
http://www.rockefeller.edu
http://newswire.rockefeller.edu/?page=engine&id=537

Further reports about: Aids HIV HIV-1 SIV Vaccine

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>