Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key to lung cancer chemo resistance revealed

12.10.2006
Scientists at Johns Hopkins have discovered how taking the brakes off a "detox" gene causes chemotherapy resistance in a common form of lung cancer.

Products made by a gene called NRF2 normally protect cells from environmental pollutants like cigarette smoke and diesel exhaust by absorbing the materials and pumping them out of the cell. Another gene called KEAP1 encodes products that stop this cleansing process. But lung cancer cells sabotage the expression of these same genes to block assault from chemotherapy drugs.

"What we're seeing is that lung cancer cells recruit and distort NRF2 and KEAP1 expression to help tumor cells evade the toxic effects of chemotherapy," says Shyam Biswal, Ph.D., associate professor at the Johns Hopkins Bloomberg School of Public Health and Kimmel Cancer Center, who published results of cell culture studies in the October 3, 2006 issue of PLoS Medicine.

Past studies have shown that NRF2 detoxifies cells by directing proteins to absorb and pump out pollutants and chemicals. The NRF2 gene makes a "trigger" protein which starts the production of other proteins and enzymes that sweep the cell clear of toxins. To halt the detox process, proteins manufactured by KEAP1 bind to the NRF2 triggers tagging them for destruction. In cancer cells, NRF2 activity runs amok, sweeping away all cellular toxins, including chemotherapy agents.

... more about:
»Chemo »KEAP1 »NRF2 »cancer cells »chemotherapy »lung cancer

Biswal says that blocking NRF2 activity could improve the effectiveness of standard chemotherapy drugs, particularly platinum-based compounds widely used for lung cancer.

In Biswal's study, half of 12 lung cancer cell lines and 10 of 54 tissue samples from non-small cell lung cancer patients had mutations in the KEAP1 gene rendering it inactive and unable to keep NRF2 activity in check. In addition, half of the tissue samples were missing one copy of the KEAP1 gene - cells usually have two copies of each gene. No missing genes or mutations were observed in normal lung tissues from the same patients.

NRF2 activity along with its cleansing proteins and enzymes were higher in tumor samples than normal cells, according to the researchers. Their cell culture tests also show that cancer cells with KEAP1 mutations are more resistant to chemotherapy drugs than normal lung cells.

Tumor samples with normal KEAP1 genes also show increased levels of NRF2 and its enzymes, suggesting other ways of dismantling KEAP1, such as splicing the gene to make a shortened, ineffective protein, he said.

The researchers plan to confirm their findings with a larger set of samples and then to screen for appropriate drugs. Funding for the study was provided by the National Cancer Institute Lung SPORE (Specialized Program of Research Excellence), National Heart Lung and Blood Institute, National Institute of Environmental Health Sciences Center, National Institute of Health, and the Flight Attendant Medical Research Institution.

Vanessa Wasta | EurekAlert!
Further information:
http://www.jhmi.edu

Further reports about: Chemo KEAP1 NRF2 cancer cells chemotherapy lung cancer

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>