Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spring in your step helps avert disastrous stumbles

12.10.2006
Animals navigate treacherous terrain by modulating limbs dynamically, selectively -- and quickly

From graceful ballerinas to clumsy-looking birds, everyone occasionally loses their footing. New Harvard University research suggests that it could literally be the spring, or damper, in your step that helps you bounce back from a stumble.

The work, published this week in the journal Proceedings of the National Academy of Sciences, sheds new light on how legged animals maintain a remarkable degree of stability on uneven terrain, highlighting the dynamic elastic and dampening roles of ankles, feet, and other distal extremities in helping us recover after stumbling. It could also help engineers develop better prosthetics and robots robust enough to navigate terrain that would leave today's automatons spinning their wheels.

"Limbs perform wonderfully on uneven terrain," says author Andrew A. Biewener, the Charles P. Lyman Professor of Biology in Harvard's Faculty of Arts and Sciences. "Legged animals routinely negotiate rough, unpredictable terrain with agility and stability that outmatches any human-built machine. Yet, we know surprisingly little about how animals accomplish this."

... more about:
»Biewener »ankle »leg »limb »spring »terrain

Together with colleague Monica A. Daley of Harvard's Department of Organismic and Evolutionary Biology, Biewener conducted experiments wherein helmeted guinea fowl (Numida meleagris) stepped unexpectedly into a concealed hole while running. Even though the hole's 8.5-centimeter depth equaled some 40 percent of the length of the birds' legs, the fowl remained stable and managed to maintain forward velocity, albeit most often by speeding up.

By monitoring the real-time forces exerted by the limb on the ground, as well as the angles and locations of key joints at the hip, knee, and ankle, Biewener and Daley determined that the stumbling birds' movements were consistent with a mass-spring model that treats the body as a mass balanced atop legs serving as springs. This springiness of the leg was concentrated at its distal end, near the ankle and foot, with only moderate effects seen at the knee and little change occurring at the hip.

"Ordinary walking is a patterned movement of repeating, predictable motions," Biewener says. "Our work suggests that even falling into a hole while running does not significantly disturb the regularity of hip motion. By contrast, the distal ankle and tarsometatarsophalangeal joints act as dampers, absorbing energy when the limb contacts the ground at an unexpected steep angle and shorter limb length, or as springs, returning energy when the limb contacts the ground at an unexpected shallow angle and more full extension."

These dynamic processes occur with astonishing speed: In the case of the guinea fowl, the leg modulates itself within 26 milliseconds as it falls into an unexpected void. The lower limbs' spring action helps the birds retain energy and momentum, stabilize their center of mass, and continue forward motion through the hole.

Biewener says this work could help create better prosthetic legs and more stable robots. Most current legged robots engage the proximal "hip" joint to generate limb work but do not incorporate dampening or modulated spring-actuation functions into more distal joints, making the machines more likely to tumble over in an irregular landscape.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

Further reports about: Biewener ankle leg limb spring terrain

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>