Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spring in your step helps avert disastrous stumbles

12.10.2006
Animals navigate treacherous terrain by modulating limbs dynamically, selectively -- and quickly

From graceful ballerinas to clumsy-looking birds, everyone occasionally loses their footing. New Harvard University research suggests that it could literally be the spring, or damper, in your step that helps you bounce back from a stumble.

The work, published this week in the journal Proceedings of the National Academy of Sciences, sheds new light on how legged animals maintain a remarkable degree of stability on uneven terrain, highlighting the dynamic elastic and dampening roles of ankles, feet, and other distal extremities in helping us recover after stumbling. It could also help engineers develop better prosthetics and robots robust enough to navigate terrain that would leave today's automatons spinning their wheels.

"Limbs perform wonderfully on uneven terrain," says author Andrew A. Biewener, the Charles P. Lyman Professor of Biology in Harvard's Faculty of Arts and Sciences. "Legged animals routinely negotiate rough, unpredictable terrain with agility and stability that outmatches any human-built machine. Yet, we know surprisingly little about how animals accomplish this."

... more about:
»Biewener »ankle »leg »limb »spring »terrain

Together with colleague Monica A. Daley of Harvard's Department of Organismic and Evolutionary Biology, Biewener conducted experiments wherein helmeted guinea fowl (Numida meleagris) stepped unexpectedly into a concealed hole while running. Even though the hole's 8.5-centimeter depth equaled some 40 percent of the length of the birds' legs, the fowl remained stable and managed to maintain forward velocity, albeit most often by speeding up.

By monitoring the real-time forces exerted by the limb on the ground, as well as the angles and locations of key joints at the hip, knee, and ankle, Biewener and Daley determined that the stumbling birds' movements were consistent with a mass-spring model that treats the body as a mass balanced atop legs serving as springs. This springiness of the leg was concentrated at its distal end, near the ankle and foot, with only moderate effects seen at the knee and little change occurring at the hip.

"Ordinary walking is a patterned movement of repeating, predictable motions," Biewener says. "Our work suggests that even falling into a hole while running does not significantly disturb the regularity of hip motion. By contrast, the distal ankle and tarsometatarsophalangeal joints act as dampers, absorbing energy when the limb contacts the ground at an unexpected steep angle and shorter limb length, or as springs, returning energy when the limb contacts the ground at an unexpected shallow angle and more full extension."

These dynamic processes occur with astonishing speed: In the case of the guinea fowl, the leg modulates itself within 26 milliseconds as it falls into an unexpected void. The lower limbs' spring action helps the birds retain energy and momentum, stabilize their center of mass, and continue forward motion through the hole.

Biewener says this work could help create better prosthetic legs and more stable robots. Most current legged robots engage the proximal "hip" joint to generate limb work but do not incorporate dampening or modulated spring-actuation functions into more distal joints, making the machines more likely to tumble over in an irregular landscape.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

Further reports about: Biewener ankle leg limb spring terrain

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>