Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spring in your step helps avert disastrous stumbles

12.10.2006
Animals navigate treacherous terrain by modulating limbs dynamically, selectively -- and quickly

From graceful ballerinas to clumsy-looking birds, everyone occasionally loses their footing. New Harvard University research suggests that it could literally be the spring, or damper, in your step that helps you bounce back from a stumble.

The work, published this week in the journal Proceedings of the National Academy of Sciences, sheds new light on how legged animals maintain a remarkable degree of stability on uneven terrain, highlighting the dynamic elastic and dampening roles of ankles, feet, and other distal extremities in helping us recover after stumbling. It could also help engineers develop better prosthetics and robots robust enough to navigate terrain that would leave today's automatons spinning their wheels.

"Limbs perform wonderfully on uneven terrain," says author Andrew A. Biewener, the Charles P. Lyman Professor of Biology in Harvard's Faculty of Arts and Sciences. "Legged animals routinely negotiate rough, unpredictable terrain with agility and stability that outmatches any human-built machine. Yet, we know surprisingly little about how animals accomplish this."

... more about:
»Biewener »ankle »leg »limb »spring »terrain

Together with colleague Monica A. Daley of Harvard's Department of Organismic and Evolutionary Biology, Biewener conducted experiments wherein helmeted guinea fowl (Numida meleagris) stepped unexpectedly into a concealed hole while running. Even though the hole's 8.5-centimeter depth equaled some 40 percent of the length of the birds' legs, the fowl remained stable and managed to maintain forward velocity, albeit most often by speeding up.

By monitoring the real-time forces exerted by the limb on the ground, as well as the angles and locations of key joints at the hip, knee, and ankle, Biewener and Daley determined that the stumbling birds' movements were consistent with a mass-spring model that treats the body as a mass balanced atop legs serving as springs. This springiness of the leg was concentrated at its distal end, near the ankle and foot, with only moderate effects seen at the knee and little change occurring at the hip.

"Ordinary walking is a patterned movement of repeating, predictable motions," Biewener says. "Our work suggests that even falling into a hole while running does not significantly disturb the regularity of hip motion. By contrast, the distal ankle and tarsometatarsophalangeal joints act as dampers, absorbing energy when the limb contacts the ground at an unexpected steep angle and shorter limb length, or as springs, returning energy when the limb contacts the ground at an unexpected shallow angle and more full extension."

These dynamic processes occur with astonishing speed: In the case of the guinea fowl, the leg modulates itself within 26 milliseconds as it falls into an unexpected void. The lower limbs' spring action helps the birds retain energy and momentum, stabilize their center of mass, and continue forward motion through the hole.

Biewener says this work could help create better prosthetic legs and more stable robots. Most current legged robots engage the proximal "hip" joint to generate limb work but do not incorporate dampening or modulated spring-actuation functions into more distal joints, making the machines more likely to tumble over in an irregular landscape.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

Further reports about: Biewener ankle leg limb spring terrain

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>