Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Squeeze play: Protein's grip like a baseball bunter's

12.10.2006
Crystallography, NMR reveal new look for key protein

Like all good baseball players, the protein calmodulin appreciates the importance of maintaining a good grip. A vital regulatory protein in all plants and animals, calmodulin is known to grab hold of hundreds of different proteins inside our cells, and it typically uses a grip that would make a Little League coach proud: it holds its two clasping lobes firmly together, one atop the other, like the hands of a big league slugger.

In a surprising find, researchers from Rice University and the University of Texas Health Science Center at Houston (UT-Houston) report in the Oct. 11 issue of Structure the first-ever case of calmodulin using a different kind of grip, a more open grasp that's reminiscent of a batter trying to lay down a bunt.

"If your hands are together, your arms operate as one unit," said Rice co-author Kevin MacKenzie, demonstrating a swing with an imaginary bat. "But when you bunt," he said, sliding one hand up into the classic bunter's stance, "your arms operate independently, and that's what we're seeing calmodulin do in this case."

... more about:
»Calcium »Grab »MacKenzie »NMR »calmodulin »compartment »ions

Calmodulin is a vital biochemical player in life forms that range from fungi to humans. Its utility lies in its ability to pass on signals both outside and inside of cells. It does this by carrying out one specialized function: it binds with calcium ions and changes shape when it does so. As it changes shape, it grabs hold or lets go of other proteins.

"Nature could have selected a system where each protein bound calcium on its own, but instead it uses calmodulin for that and then has calmodulin interact with the other proteins," said MacKenzie, assistant professor of biochemistry and cell biology.

One of calmodulin's roles in muscle cells comes in regulating the flow of calcium ions into the cell. When your nerve sends a signal to your heart to beat or your arm to move, the signal causes tiny compartments of calcium inside the muscle cells to open briefly and release a burst of calcium ions that cause the muscle to contract. Then, tiny pumps throughout the cell remove the calcium and put it back in the compartments, causing the muscle to relax.

Calmodulin is known to grab hold of the valve on the compartment that opens to release the burst of ions and closes again when the compartment is being filled. This valve, known as the ryanodine receptor, or RYR1, is almost 35 times larger than calmodulin, and the team from Rice and UT-Houston used a combination of X-ray crystallography and nuclear magnetic resonance (NMR) to determine the precise structure or shape of calmodulin that binds to the receptor in the presence of calcium.

"Though calmodulin is known to bind to lots of different proteins, it usually grabs hold with both lobes or lets go with both, depending upon whether calcium is around," MacKenzie said. "With RYR1, calmodulin stays bound whether calcium's there or not, and we think this two-handed grip could play a functional role, perhaps allowing it to keep hold with one lobe at all times, but grabbing and releasing with the other to help open or close the valve."

MacKenzie said the researchers confirmed calmodulin's new grip using state-of-the-art techniques on the Gulf Coast Consortia's (GCC) powerful 800 MHz NMR in Rice's Keck Hall. MacKenzie believes the new grip plays a key role in allowing our muscles to contract and relax quickly. He said the team hopes to learn more through follow-up investigations of the structure of calmodulin that is bound to the receptor in the absence of calcium. Preliminary results suggest that calmodulin uses yet another grip in this situation.

"The combination of X-ray crystallography and NMR residual dipolar couplings allowed us to identify both the overall structure of the complex and movements within the complex on the microsecond time-scale, which is important because that time scale is relevant for fast-twitching muscles," he said. "But it's actually pretty hard to measure motion at the microsecond time scale using NMR."

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

Further reports about: Calcium Grab MacKenzie NMR calmodulin compartment ions

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>