Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Squeeze play: Protein's grip like a baseball bunter's

12.10.2006
Crystallography, NMR reveal new look for key protein

Like all good baseball players, the protein calmodulin appreciates the importance of maintaining a good grip. A vital regulatory protein in all plants and animals, calmodulin is known to grab hold of hundreds of different proteins inside our cells, and it typically uses a grip that would make a Little League coach proud: it holds its two clasping lobes firmly together, one atop the other, like the hands of a big league slugger.

In a surprising find, researchers from Rice University and the University of Texas Health Science Center at Houston (UT-Houston) report in the Oct. 11 issue of Structure the first-ever case of calmodulin using a different kind of grip, a more open grasp that's reminiscent of a batter trying to lay down a bunt.

"If your hands are together, your arms operate as one unit," said Rice co-author Kevin MacKenzie, demonstrating a swing with an imaginary bat. "But when you bunt," he said, sliding one hand up into the classic bunter's stance, "your arms operate independently, and that's what we're seeing calmodulin do in this case."

... more about:
»Calcium »Grab »MacKenzie »NMR »calmodulin »compartment »ions

Calmodulin is a vital biochemical player in life forms that range from fungi to humans. Its utility lies in its ability to pass on signals both outside and inside of cells. It does this by carrying out one specialized function: it binds with calcium ions and changes shape when it does so. As it changes shape, it grabs hold or lets go of other proteins.

"Nature could have selected a system where each protein bound calcium on its own, but instead it uses calmodulin for that and then has calmodulin interact with the other proteins," said MacKenzie, assistant professor of biochemistry and cell biology.

One of calmodulin's roles in muscle cells comes in regulating the flow of calcium ions into the cell. When your nerve sends a signal to your heart to beat or your arm to move, the signal causes tiny compartments of calcium inside the muscle cells to open briefly and release a burst of calcium ions that cause the muscle to contract. Then, tiny pumps throughout the cell remove the calcium and put it back in the compartments, causing the muscle to relax.

Calmodulin is known to grab hold of the valve on the compartment that opens to release the burst of ions and closes again when the compartment is being filled. This valve, known as the ryanodine receptor, or RYR1, is almost 35 times larger than calmodulin, and the team from Rice and UT-Houston used a combination of X-ray crystallography and nuclear magnetic resonance (NMR) to determine the precise structure or shape of calmodulin that binds to the receptor in the presence of calcium.

"Though calmodulin is known to bind to lots of different proteins, it usually grabs hold with both lobes or lets go with both, depending upon whether calcium is around," MacKenzie said. "With RYR1, calmodulin stays bound whether calcium's there or not, and we think this two-handed grip could play a functional role, perhaps allowing it to keep hold with one lobe at all times, but grabbing and releasing with the other to help open or close the valve."

MacKenzie said the researchers confirmed calmodulin's new grip using state-of-the-art techniques on the Gulf Coast Consortia's (GCC) powerful 800 MHz NMR in Rice's Keck Hall. MacKenzie believes the new grip plays a key role in allowing our muscles to contract and relax quickly. He said the team hopes to learn more through follow-up investigations of the structure of calmodulin that is bound to the receptor in the absence of calcium. Preliminary results suggest that calmodulin uses yet another grip in this situation.

"The combination of X-ray crystallography and NMR residual dipolar couplings allowed us to identify both the overall structure of the complex and movements within the complex on the microsecond time-scale, which is important because that time scale is relevant for fast-twitching muscles," he said. "But it's actually pretty hard to measure motion at the microsecond time scale using NMR."

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

Further reports about: Calcium Grab MacKenzie NMR calmodulin compartment ions

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>