Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Squeeze play: Protein's grip like a baseball bunter's

12.10.2006
Crystallography, NMR reveal new look for key protein

Like all good baseball players, the protein calmodulin appreciates the importance of maintaining a good grip. A vital regulatory protein in all plants and animals, calmodulin is known to grab hold of hundreds of different proteins inside our cells, and it typically uses a grip that would make a Little League coach proud: it holds its two clasping lobes firmly together, one atop the other, like the hands of a big league slugger.

In a surprising find, researchers from Rice University and the University of Texas Health Science Center at Houston (UT-Houston) report in the Oct. 11 issue of Structure the first-ever case of calmodulin using a different kind of grip, a more open grasp that's reminiscent of a batter trying to lay down a bunt.

"If your hands are together, your arms operate as one unit," said Rice co-author Kevin MacKenzie, demonstrating a swing with an imaginary bat. "But when you bunt," he said, sliding one hand up into the classic bunter's stance, "your arms operate independently, and that's what we're seeing calmodulin do in this case."

... more about:
»Calcium »Grab »MacKenzie »NMR »calmodulin »compartment »ions

Calmodulin is a vital biochemical player in life forms that range from fungi to humans. Its utility lies in its ability to pass on signals both outside and inside of cells. It does this by carrying out one specialized function: it binds with calcium ions and changes shape when it does so. As it changes shape, it grabs hold or lets go of other proteins.

"Nature could have selected a system where each protein bound calcium on its own, but instead it uses calmodulin for that and then has calmodulin interact with the other proteins," said MacKenzie, assistant professor of biochemistry and cell biology.

One of calmodulin's roles in muscle cells comes in regulating the flow of calcium ions into the cell. When your nerve sends a signal to your heart to beat or your arm to move, the signal causes tiny compartments of calcium inside the muscle cells to open briefly and release a burst of calcium ions that cause the muscle to contract. Then, tiny pumps throughout the cell remove the calcium and put it back in the compartments, causing the muscle to relax.

Calmodulin is known to grab hold of the valve on the compartment that opens to release the burst of ions and closes again when the compartment is being filled. This valve, known as the ryanodine receptor, or RYR1, is almost 35 times larger than calmodulin, and the team from Rice and UT-Houston used a combination of X-ray crystallography and nuclear magnetic resonance (NMR) to determine the precise structure or shape of calmodulin that binds to the receptor in the presence of calcium.

"Though calmodulin is known to bind to lots of different proteins, it usually grabs hold with both lobes or lets go with both, depending upon whether calcium is around," MacKenzie said. "With RYR1, calmodulin stays bound whether calcium's there or not, and we think this two-handed grip could play a functional role, perhaps allowing it to keep hold with one lobe at all times, but grabbing and releasing with the other to help open or close the valve."

MacKenzie said the researchers confirmed calmodulin's new grip using state-of-the-art techniques on the Gulf Coast Consortia's (GCC) powerful 800 MHz NMR in Rice's Keck Hall. MacKenzie believes the new grip plays a key role in allowing our muscles to contract and relax quickly. He said the team hopes to learn more through follow-up investigations of the structure of calmodulin that is bound to the receptor in the absence of calcium. Preliminary results suggest that calmodulin uses yet another grip in this situation.

"The combination of X-ray crystallography and NMR residual dipolar couplings allowed us to identify both the overall structure of the complex and movements within the complex on the microsecond time-scale, which is important because that time scale is relevant for fast-twitching muscles," he said. "But it's actually pretty hard to measure motion at the microsecond time scale using NMR."

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

Further reports about: Calcium Grab MacKenzie NMR calmodulin compartment ions

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>