Does missing gene point to nocturnal existence for early mammals?

They say that whereas some animals like birds, fish and amphibians have two versions of this photoreceptor, mammals, including humans, only have one.

The findings – published in the Public Library of Science journal PLoS Biology – reveal how our experience of the light environment may be impoverished compared to other vertebrates and fits with the suggestion that early mammals were at one time wholly nocturnal creatures.

“The classical view of how the eye sees is through photoreceptive cells in the retina called rods and cones,” explained Dr Jim Bellingham, who led the research at The University of Manchester.

“But, recently, a third photoreceptor was discovered that is activated by a gene called melanopsin. This melanopsin photoreceptor is not linked to sight but uses light for non-visual processes, such as regulating our day-night rhythms and pupil constriction.”

Although the melanopsin gene is present in all vertebrates, the version in mammals was unusually different to that found in fish, amphibians and birds.

“At first, we put this genetic anomaly between mammals and other vertebrates down to evolutionary differences,” said Dr Bellingham, who is based in the Faculty of Life Sciences.

“But we have now learnt that other vertebrates have a second melanopsin gene – one that matches the one found earlier in mammals and humans. The first melanopsin gene found in the other classes of vertebrates does not exist in mammals.”

It is not yet clear how the functions of the two melanopsins differ but having different cone genes or ‘opsins’ allows vertebrates to detect different wavelengths of light and allows them to see colour.

The Manchester team now hope to find out whether the two melanopsin genes in non-mammals play similar or different roles in non-visual light detection and so provide clues as to the implications of only having one melanopsin gene.

“The two genes and their associated proteins have been maintained in vertebrates for hundreds of millions of years, only for one of them to be lost in mammals.

“We are keen to discover why this might have happened – perhaps the early mammals were at one stage nocturnal and had no need for the second gene, for instance. We also want to find out what losing one of these genes means for humans.”

Media Contact

Aeron Haworth alfa

More Information:

http://www.manchester.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors