Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Does missing gene point to nocturnal existence for early mammals?

A gene that makes cells in the eye receptive to light is missing in humans, researchers have discovered.

They say that whereas some animals like birds, fish and amphibians have two versions of this photoreceptor, mammals, including humans, only have one.

The findings – published in the Public Library of Science journal PLoS Biology – reveal how our experience of the light environment may be impoverished compared to other vertebrates and fits with the suggestion that early mammals were at one time wholly nocturnal creatures.

“The classical view of how the eye sees is through photoreceptive cells in the retina called rods and cones,” explained Dr Jim Bellingham, who led the research at The University of Manchester.

“But, recently, a third photoreceptor was discovered that is activated by a gene called melanopsin. This melanopsin photoreceptor is not linked to sight but uses light for non-visual processes, such as regulating our day-night rhythms and pupil constriction.”

Although the melanopsin gene is present in all vertebrates, the version in mammals was unusually different to that found in fish, amphibians and birds.

“At first, we put this genetic anomaly between mammals and other vertebrates down to evolutionary differences,” said Dr Bellingham, who is based in the Faculty of Life Sciences.

“But we have now learnt that other vertebrates have a second melanopsin gene – one that matches the one found earlier in mammals and humans. The first melanopsin gene found in the other classes of vertebrates does not exist in mammals.”

It is not yet clear how the functions of the two melanopsins differ but having different cone genes or ‘opsins’ allows vertebrates to detect different wavelengths of light and allows them to see colour.

The Manchester team now hope to find out whether the two melanopsin genes in non-mammals play similar or different roles in non-visual light detection and so provide clues as to the implications of only having one melanopsin gene.

“The two genes and their associated proteins have been maintained in vertebrates for hundreds of millions of years, only for one of them to be lost in mammals.

“We are keen to discover why this might have happened – perhaps the early mammals were at one stage nocturnal and had no need for the second gene, for instance. We also want to find out what losing one of these genes means for humans.”

Aeron Haworth | alfa
Further information:

Further reports about: Melanopsin melanopsin gene nocturnal vertebrates

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>