Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Most important actors in the growth process of neurons identified

12.10.2006
Defects in the growth process of our neurons often underlie brain or nerve diseases, such as Alzheimer’s disease or multiple sclerosis. Scientists from the Flanders Interuniversity Institute for Biotechnology (VIB) connected to the Katholieke Universiteit Leuven, led by Bassem Hassan, have achieved a major step in unraveling the growth process of axons, the offshoots of neurons.

They have identified the JNK, Wnt and FGF signaling cascades as the most important actors and have also discovered their respective roles. Their research shows that the growth of axons and the activity of neurons are completely independent of each other. This new finding can lead to better understanding of a variety of nerve diseases.

A complex network

A human being has approximately 100 billion neurons, the body’s information and signal processors. The great majority of them are found in the central nervous system. The brain contains complex networks of neurons that regulate a large number of bodily functions. Because the brain and the nervous system are a delicate system, something can sometimes go seriously wrong and a brain or nerve disease appears - for example, Alzheimer’s or Parkinson’s disease, Amyotrophic Lateral Sclerosis (ALS), or Multiple Sclerosis (MS). In the quest for possible cures for these diseases, it is important that we understand how connections are established between neurons.

... more about:
»Axon »FGF »JNK »Wnt »fruit fly »nervous system »neurons

Neurons have a number of long thin offshoots - called axons - that conduct electrical impulses. These primary elements of information transfer in the nervous system can sometimes be more than a meter long. The axon’s orientation as it grows is also of great importance in forming the right connection. As in-coming stimuli are converted into signals that determine the direction and speed of an axon’s growth, three things can happen: the axon can grow further, pull back, or change direction. Therefore, axon growth is a process that consists of several components: growth of the axon, orientation, recognition of objectives, and finally formation of synapses in order to transmit stimuli. Unraveling precisely how this whole process works is important for understanding the development of the brain and for helping develop therapies for diseases that are the consequence of damaged or diseased neurons.

The fruit fly as model

Bassem Hassan is using the fruit fly (Drosophila melanogaster) as model for his research. Many processes in this small fly are in fact comparable to processes in humans, even for something as complex as the nervous system. Axon growth is a complicated process in that it involves growth as well as orientation and recognition. So it’s not surprising that many different genes are involved. To bring clarity to this complex organization, Mohammed Srahna and his colleagues, led by Bassem Hassan, have been studying the DCN (Dorsal Cluster Neurons), a group of cells in the fruit fly’s brain. The DCN belong to the visual system of the adult fruit fly and stimulate the visual cortex. The axons of the DCN form a very stereotypical connection pattern. This well-ordered pattern gave the researchers the perfect starting point for studying the influence of various genes on the axon growth process.

Regulation by several genes

From their study of the developing brain of an adult fruit fly, the researchers have found that axon growth is mediated by an interaction among three signal cascades: Wnt, FGF and JNK. JNK is necessary for stimulating the growth of axons. Wnt activates JNK and FGF inactivates JNK, so the right balance between Wnt and FGF provides for a precise regulation of the growth of neurons. Axonal growth turns out to be completely independent of neuronal activity. This finding brings greater clarity to the axon’s growth process - knowledge that constitutes a major step forward in understanding neuronal disorders.

Sooike Stoops | alfa
Further information:
http://www.vib.be

Further reports about: Axon FGF JNK Wnt fruit fly nervous system neurons

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>