Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An intelligent combination of mathematics and cell biology could spell death to brain tumours

23.01.2002


Combining two separate observations of cells in brain tumours could enable doctors to improve the success rate of radiotherapy. Speaking today (23 January) at the Institute of Physics Simulation and Modelling Applied to Medicine conference in London, chemical engineer Dr Norman Kirkby from the University of Surrey will explain how using the correct time intervals between a sequence of low dose radiotherapy sessions could increase the chance of curing brain cancers that tend to resist treatment.



The work started with the discovery that there is a class of brain cancers (gliomas) that are susceptible to low doses of radiation, but can resist high doses. These cancers can occur in children as well as adults. They are difficult to treat because they do not form solid lumps that can be removed by surgery. Instead they spread in a diffuse manner through the brain.

The question was, would it be possible to find a way of getting the most benefit from giving multiple sessions of low-dose therapy? A team of chemical engineers, cell biologists and clinicians, drawn from the University of Surrey, Addenbrooke’s Hospital in Cambridge and The Gray Cancer Institute at Mount Vernon Hospital in Middlesex, came together to see if they could make some accurate predictions.


Kirkby and colleagues built a mathematical model that described the biology of cancer, and the effect that radiation has on it. Tumours grow when a number of cells multiply. For this to occur, cells take part in a cycle of activity, in which they first produce new copies of the genetic information, then check that the copies have no errors, before finally splitting the cell into two. During the checking phase of the cell cycle they also repair any errors in the genetic code.

Radiotherapy works by damaging each cell’s DNA. But if the therapy is given when cells are in the repair phase of their cycle, they will simply sort out the damage and carry on growing.

The new mathematical model is enabling the team to calculate the best time intervals to leave between doses of radiation, so that the maximum number of cells are caught at a time when they can’t repair the damage. It suggests that a patient should receive small doses at fairly precise times, several times a day. This is new. Standard systems of treatment give larger doses with intervals of a few days.

“The model is convincing, but the challenge will be to find ways of fitting this treatment schedule into the diaries of a working radiotherapy department,” says cancer expert Dr Neil Burnet.

Team member Dr Susan Short hopes that giving low doses of treatment at optimum time intervals will mean that they can destroy the cancer cells in people’s brains without causing excessive damage to the normal brain tissue.



Liezel Tipper | alphagalileo

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>