Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A new way to treat colon cancer?

Possible new drug still is three to five years away

Researchers at University of Utah's Huntsman Cancer Institute have discovered a new target for possible future colon cancer treatments – a molecule that is implicated in 85 percent of colon cancer cases.

These findings were published online Oct. 6, 2006, in the Journal of Biological Chemistry.

By knocking out – that is, genetically disabling – a molecule called C-Terminal Binding Protein (CTBP) researchers were able to rescue zebrafish from the effects of a mutation in the adenomatous polyposis coli (APC) gene.

... more about:
»APC »CtBP »Mutation »colon cancer »retinoic

In humans, mutations in this gene long have been known to initiate a series of events that cause colon polyps, which eventually become cancerous. APC mutations play a role in 85 percent of colon cancers. The new findings mean CTBP also is involved in that proportion of colon cancers.

In zebrafish, APC mutations keep the intestine from developing properly. "In essence, knocking out CTPB promotes normal development of the intestine in zebrafish carrying an APC mutation," says David A. Jones, a University of Utah associate professor of oncological sciences and leader of the study.

In normal cells of both humans and zebrafish, the APC gene controls the amount of CTBP present by marking it for destruction. In tumor cells with mutated APC, CTPB is not destroyed; instead it accumulates in the cell.

One function of CTBP is to turn off the process that converts vitamin A into retinoic acid in the cell. Retinoic acid is essential in cell differentiation – the function that determines what type of cell forms and how long it lives. This study observed that in both zebrafish and human tissues with APC mutations, there are high CTBP levels and low capability to produce retinoic acid. In APC-mutated tissues in which CTBP had been "knocked out," retinoic acid production was restored.

Earlier studies in Jones' lab showed that lack of retinoic acid caused zebrafish intestines to form incorrectly, and that adding retinoic acid corrected the problems.

"Knocking out CTBP does exactly the same thing, and the logical conclusion is that it's because CTBP controls retinoic acid production," says Jones. "Since CTBP is a completely new target, we must now look for potential chemical agents that would work to block its actions. That could take three to five years."

Linda Aagard | EurekAlert!
Further information:

Further reports about: APC CtBP Mutation colon cancer retinoic

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>