Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new way to treat colon cancer?

11.10.2006
Possible new drug still is three to five years away

Researchers at University of Utah's Huntsman Cancer Institute have discovered a new target for possible future colon cancer treatments – a molecule that is implicated in 85 percent of colon cancer cases.

These findings were published online Oct. 6, 2006, in the Journal of Biological Chemistry.

By knocking out – that is, genetically disabling – a molecule called C-Terminal Binding Protein (CTBP) researchers were able to rescue zebrafish from the effects of a mutation in the adenomatous polyposis coli (APC) gene.

... more about:
»APC »CtBP »Mutation »colon cancer »retinoic

In humans, mutations in this gene long have been known to initiate a series of events that cause colon polyps, which eventually become cancerous. APC mutations play a role in 85 percent of colon cancers. The new findings mean CTBP also is involved in that proportion of colon cancers.

In zebrafish, APC mutations keep the intestine from developing properly. "In essence, knocking out CTPB promotes normal development of the intestine in zebrafish carrying an APC mutation," says David A. Jones, a University of Utah associate professor of oncological sciences and leader of the study.

In normal cells of both humans and zebrafish, the APC gene controls the amount of CTBP present by marking it for destruction. In tumor cells with mutated APC, CTPB is not destroyed; instead it accumulates in the cell.

One function of CTBP is to turn off the process that converts vitamin A into retinoic acid in the cell. Retinoic acid is essential in cell differentiation – the function that determines what type of cell forms and how long it lives. This study observed that in both zebrafish and human tissues with APC mutations, there are high CTBP levels and low capability to produce retinoic acid. In APC-mutated tissues in which CTBP had been "knocked out," retinoic acid production was restored.

Earlier studies in Jones' lab showed that lack of retinoic acid caused zebrafish intestines to form incorrectly, and that adding retinoic acid corrected the problems.

"Knocking out CTBP does exactly the same thing, and the logical conclusion is that it's because CTBP controls retinoic acid production," says Jones. "Since CTBP is a completely new target, we must now look for potential chemical agents that would work to block its actions. That could take three to five years."

Linda Aagard | EurekAlert!
Further information:
http://www.hci.utah.edu

Further reports about: APC CtBP Mutation colon cancer retinoic

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>