Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study IDs protein that inhibits HIV from growing in cell cultures

11.10.2006
How a harmless virus called GB Virus type C (GBV-C) protects against HIV infection is now better understood. Researchers at the Department of Veterans Affairs (VA) Iowa City Health Care System and the University of Iowa have identified a protein segment that strongly inhibits HIV from growing in cell models.

The team found that an 85-amino acid segment within a GBV-C viral protein called NS5A greatly slows down HIV from replicating in cells grown in labs. The study results will appear online this week in the Proceedings of the National Academy of Sciences.

The finding builds on earlier VA and UI work showing that people with HIV who also are infected GBV-C live longer than those infected only with HIV, said Jinhua Xiang, M.D., a VA research health scientific specialist, UI researcher and the current study's principal author.

GBV-C and its role in HIV infection have been studied for nearly a decade by Xiang, along with another study author Jack Stapleton, M.D., staff physician and researcher at the VA Iowa City Health Care System and professor of internal medicine at the UI Roy J. and Lucille A. Carver College of Medicine.

... more about:
»GBV-C »HIV »NS5A »Protein »T-cell »Xiang

"Identifying a specific protein made by GBV-C that inhibits HIV growth in cell culture strengthens the argument that GBV-C is responsible for the prolonged survival observed in several studies of HIV-positive people," Xiang said. "Understanding how the protein works may allow us to develop target-specific therapies that can mimic these effects and inhibit HIV.

"Potentially these novel therapies would have certain advantages over current drugs, as the newer therapies would target the cell in which HIV can replicate and not the virus directly. Therefore, HIV should have more difficulty developing resistance to the effects of this protein," Xiang added.

Xiang previously discovered that GBV-C grows in the same type of white blood cells, CD4 T-cells, that HIV grows in and ultimately destroys. HIV attaches to this T-cell by first landing on a receptor called CD4. Once it reacts with the receptor, HIV can enter the cell, multiply and destroy the T-cell, thereby causing immune deficiency.

"People with GBV-C have a slower rate of destruction of these T-cells," said Stapleton, who also is director of the Division of Infectious Diseases at the Iowa City VA and UI.

The current study shows that the newly identified protein, NS5A, inhibits HIV in part by decreasing the number of CD4 receptors available to HIV. With fewer places for HIV to "dock," less HIV enters the cells to inflict destruction.

However, Xiang cautioned, this is only part of the story, and the researchers must continue work to understand how the NS5A protein exerts its total effect.

"Before NS5A can be used for any kind of therapy, we need to further map it," Xiang said. "We need to zero in to see what region has the critical effect on HIV inhibition."

Once that is accomplished, the team will seek to develop small molecular drugs that mimic the inhibiting action.

Stapleton noted that GBV-C is not toxic to T-cells and is not associated with any human disease. As a result, the U.S. Food and Drug Administration does not require that blood donations be screened for this common virus.

Up to 3 percent of healthy blood donors in the United States have active GBV-C infection. An additional 12 percent have antibodies indicating past exposure at the time of donation. Because the GBV-virus is transmitted through bodily fluids, as is HIV, many HIV-positive individuals have evidence of past or present infection with GBV-C.

Stapleton and Xiang first began studying the GBV-C and HIV connection because they were skeptical of earlier studies published in the mid-1990s.

"It was a strange story," Stapleton said. "Who would have thought a virus floating around in a lot of people does not make them sick but could significantly influence survival in people with HIV?"

Becky Soglin | EurekAlert!
Further information:
http://www.uiowa.edu

Further reports about: GBV-C HIV NS5A Protein T-cell Xiang

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>