Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More than meets the eye

10.10.2006
Ever watch a jittery video made with a hand-held camera that made you almost ill? With our eyes constantly darting back and forth and our body hardly ever holding still, that is exactly what our brain is faced with. Yet despite the shaky video stream, we usually perceive our environment as perfectly stable.

Not only does the brain find a way to compensate for our constantly flickering gaze, but researchers at the Salk Institute for Biological Studies have found that it actually turns the tables and relies on eye movements to recognize partially hidden or moving objects. Their findings will be published in a forthcoming issue of Nature Neuroscience.

"You might expect that if you move your eyes, your perception of objects might get degraded," explains senior author Richard Krauzlis, Ph.D., an associate professor in the Systems Neurobiology Laboratory at the Salk Institute. "The striking thing is that moving your eyes can actually help resolve ambiguous visual inputs."

Our eyes move all the time, whether to follow a moving object or to scan our surroundings. On average, our eyes move several times a second – in fact, in a lifetime, our eyes move more often than our heart beats. "Nevertheless, you don't have the sense that the world has just swept across or rotated around you. You sense that the world is stable," says Krauzlis.

... more about:
»Hafed »Krauzlis »Video »Visual »eye movement »movements

Just like high-end video cameras, the brain relies on an internal image stabilization system to prevent our perception of the world from turning into a blurry mess. Explains lead author Ziad Hafed, Ph.D. "Obviously, the brain has found a solution. In addition to the jumpy video stream, the visual system constantly receives feedback about the eye movements that the brain is generating."

Hafed and Krauzlis took the question of how the brain is able to maintain perception under less than optimal circumstances one step further. "If you think of the video stream as a bunch of pixels coming in from the eyes, the real challenge for the visual system is to decide which pixels belong to which objects. We wondered whether information about eye movements is used by the brain to solve this difficult problem," says Hafed, who is an NSERC (Canada) and Sloan-Swartz post-doctoral researcher at the Salk Institute.

Krauzlis explains that the human brain recognizes objects in everyday circumstances because it is very good at filling in missing visual information. "When we see a deer partially hidden by tree trunks in a forest, we can still segment the visual scene and properly interpret the individual features and group them together into objects," he says.

However, even though recognizing that deer is effortless for us, it is not a trivial accomplishment for the brain. Teaching computers to recognize objects in real life situations has proven to be an almost insurmountable problem. Artificial intelligence researchers have spent much time and effort trying to design robots that can recognize objects in unconstrained situations, but so far, their success has been limited.

To determine whether eye movements actually help the brain recognize objects, Hafed and Krauzlis asked whether people perceived an object better when they actively moved their eyes or when they stared at a given point in space. Human subjects watched a short video that allowed them to glimpse a partially hidden chevron shape that moved in a circle.

When they kept their eyes still by fixating on a stationary spot, observers perceived only random lines moving up and down. But when they moved their eyes such that the input video streams through them were unaltered, viewers easily recognized the lines as a circling chevron.

"It turns out that eye movements not only help with image stabilization, but that this additional input also plays a fairly important role for the perception of objects in the face of all the challenges that real life visual scenes pose – that objects are obscured or are moving, and so on," says Hafed.

Gina Kirchweger | EurekAlert!
Further information:
http://www.salk.edu

Further reports about: Hafed Krauzlis Video Visual eye movement movements

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>