Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


USC researchers discover breast cancer stem cells in bone marrow

May mean greater risk for breast cancer patients than previously thought

Almost all tumor cells found in the bone marrow of early stage breast cancer patients appear to be breast cancer stem cells, suggesting the risk of disease spread for all breast cancer patients may be greater than previously thought, according to a ground-breaking study by Richard J. Cote, professor of pathology and urology at the Keck School of Medicine of the University of Southern California (USC).

"Most Early Disseminated Cancer Cells Detected in Bone Marrow of Breast Cancer Patients Have a Putative Breast Cancer Stem Cell Phenotype" which appears in this week's issue of Clinical Cancer Research, provides the first evidence of the putative stem/progenitor cells within tumor cells collected from the bone marrow.

Stem cells are a type of cell in breast tumors that are believed to seed the growth of new cancers. These cells are only a small part of the vast number of cells within tumors, but they can act like adult stem cells - a basic cell that can grow into different types of specialized cells.

Much current research has focused on the theory that it is these stem cells landing in a distant site that creates metastases, and not simply single cells that detach from the primary tumor and travel to another part of the body.

Although disseminated tumor cells, either in the bone marrow or lymph nodes, are already regarded as a prerequisite for relapse and metastasis, no studies have as yet examined these cells for the existence of the stem cell phenotype.

"The primary implication is that it is the stem cell population in cancers that are presumed to be the only cells capable of forming metastases," said Cote. "Metastasis is the most important event for determining outcome in cancer patients."

In the study, Cote and colleagues looked at 50 bone marrow specimens from women whose breast cancer was caught in its earliest stages, but in whom tumor cells were detected in the bone marrow. Using a newly developed immunohistochemical protocol, Cote and colleagues found the tumor cells from all patients contained a population of putative stem cells.

The presence of CD44 protein with the absence of CD24 protein defines the stem cell population of tumor cells. Only a small proportion of tumor cells at the primary tumor site in the breast have been shown to have the stem cell characteristics. It has been shown that only the stem cells have the ability to form metastases in experimental models.

What was surprising to Cote and his colleagues, who anticipated some stem cells within the disseminated tumor cells, was that the majority of the remote tumor cells have the stem cell characteristics, and that they appeared in the bone marrow of breast cancer patients whose disease was caught in the earliest stages.

"We know that the presence of disseminated tumor cells in the bone marrow is a bad feature, as it is an indicator of future metastases, but we didn't know if these were the cells that actually cause disease progression," said Cote. "This data suggest that the vast majority of patients with disseminated tumor cells may have a life-time risk for relapse. We definitely need to pursue molecular studies of these putative stem cells."

Kathleen O'Neil | EurekAlert!
Further information:

Further reports about: Cote Stem cancer patients disseminated marrow metastases tumor cells

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>