Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electromagnetic Miniatures

09.10.2006
Simultaneous production of microchannels with parallel, electrically conducting metal wires

Magnetic components that can be controlled by the application of an external electric field are useful in many different applications. They can serve as microfluidic pumps, mixers, or valves in miniature lab-on-chip systems, or they can help in sorting and arranging magnetic particles. Biochemistry and cellular biology in particular benefit from many possible uses: for example, antibodies or other ligands that bind to individual biomolecules or to surface structures of cells can be coupled to magnetic beads in order to recognize and bind to their specific bonding partner even in complex mixtures. They can subsequently be fished out of the mixture with an electromagnet.

Electromagnets have an additional advantage over permanent magnets: they can easily be switched on and off with an electric current. Also, the field strength can be adjusted to the desired value and can be changed as required. However, electromagnets do have the disadvantage of generating weaker magnetic fields, meaning that they must be very close to the place where they are to be used.

G. M. Whitesides and his co-workers at Harvard University in Cambridge, USA, have now developed an uncomplicated method for producing a microfluidic channel along with two metal cables parallel to it and only 10 µm away. First, a structure consisting of a 40-µm-wide and 40-µm-deep inner channel between two 120-µm-wide and 40-µm-deep outer channels was lithographically engraved into a polydimethylsiloxane resin. Treatment with 3-mercaptopropyltrimethoxysilane silanized the surfaces of the outer channels. This allowed them to be coated with molten solder that was poured into the heated forms in the next step. Upon cooling, the liquid metal solidified, forming two stable metal cables to the left and right of the inner channel. Application of an electrical field to these two wires generates magnetic fields of up to 2.8 mT within the central channel.

... more about:
»Magnetic »magnetic field

It was also possible to steer magnetic spheres through the channel: the scientists again made a channel with parallel wires on either side, but this time the channel forked after a few millimeters. A suspension of magnetic spheres flowed through the channel. If current was allowed to flow through wire on the right, the spheres flowed to the right as they reached the fork, and vice versa.

George M. Whitesides | EurekAlert!
Further information:
http://www.gmwgroup.harvard.edu

Further reports about: Magnetic magnetic field

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

Uncovering decades of questionable investments

18.01.2018 | Business and Finance

Novel chip-based gene expression tool analyzes RNA quickly and accurately

18.01.2018 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>