Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Electromagnetic Miniatures

Simultaneous production of microchannels with parallel, electrically conducting metal wires

Magnetic components that can be controlled by the application of an external electric field are useful in many different applications. They can serve as microfluidic pumps, mixers, or valves in miniature lab-on-chip systems, or they can help in sorting and arranging magnetic particles. Biochemistry and cellular biology in particular benefit from many possible uses: for example, antibodies or other ligands that bind to individual biomolecules or to surface structures of cells can be coupled to magnetic beads in order to recognize and bind to their specific bonding partner even in complex mixtures. They can subsequently be fished out of the mixture with an electromagnet.

Electromagnets have an additional advantage over permanent magnets: they can easily be switched on and off with an electric current. Also, the field strength can be adjusted to the desired value and can be changed as required. However, electromagnets do have the disadvantage of generating weaker magnetic fields, meaning that they must be very close to the place where they are to be used.

G. M. Whitesides and his co-workers at Harvard University in Cambridge, USA, have now developed an uncomplicated method for producing a microfluidic channel along with two metal cables parallel to it and only 10 µm away. First, a structure consisting of a 40-µm-wide and 40-µm-deep inner channel between two 120-µm-wide and 40-µm-deep outer channels was lithographically engraved into a polydimethylsiloxane resin. Treatment with 3-mercaptopropyltrimethoxysilane silanized the surfaces of the outer channels. This allowed them to be coated with molten solder that was poured into the heated forms in the next step. Upon cooling, the liquid metal solidified, forming two stable metal cables to the left and right of the inner channel. Application of an electrical field to these two wires generates magnetic fields of up to 2.8 mT within the central channel.

... more about:
»Magnetic »magnetic field

It was also possible to steer magnetic spheres through the channel: the scientists again made a channel with parallel wires on either side, but this time the channel forked after a few millimeters. A suspension of magnetic spheres flowed through the channel. If current was allowed to flow through wire on the right, the spheres flowed to the right as they reached the fork, and vice versa.

George M. Whitesides | EurekAlert!
Further information:

Further reports about: Magnetic magnetic field

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>