Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Images develop clinical applications for new DESI technology

09.10.2006
Purdue University researchers have created the first two-dimensional images of biological samples using a new mass spectrometry technique that furthers the technology's potential applications for the detection of diseases such as cancer.

The technology, desorption electrospray ionization, or DESI, measures characteristic chemical markers that distinguish diseased from non-diseased regions of tissue samples within a few seconds and has eliminated the need for samples to be treated with chemicals and specially contained.

This tool has a wide range of applications and could be used in the future to address many medical issues, said Graham Cooks, Purdue's Henry B. Hass Distinguished Professor of Analytical Chemistry in whose lab DESI was developed.

"This technology could be used to aid surgeons in precisely and completely removing cancerous tissue," he said. "With these images, we can see the exact location of tumor masses and can detect cancerous sites that are indistinguishable to the naked eye."

... more about:
»Cooks »DESI »IFA »Purdue' »Spectrometer »mass spectrometer

Current surgical methods rely on the trained eye of a pathologist who views stained tissue slices under a microscope to assess what tissue must be removed.

This study was the first to take the graphical data presented by DESI mass spectrometry and turn it into a two-dimensional image of the tissue, said Demian Ifa, a member of Cooks' research team.

"The ability to produce an image is a great advance," he said. "It is much more practical to have an image that can quickly and easily be interpreted. It brings the technology much closer to being ready for the clinical setting."

A paper detailing the study has been selected as a "very important paper" by the journal Angewandte Chemie and is currently posted online. Cooks, Ifa, Justin Wiseman, and Qingyu Song, all from Purdue's Department of Chemistry, authored the paper, which will be featured on the cover of the print publication. Less than 5 percent of the journal's manuscripts earn the very important paper designation, according to the journal.

Several technical papers have been published about DESI experiments since the method was announced two years ago as an alternative to traditional mass spectrometry techniques.

Conventional mass spectrometry requires chemical separations, manipulations of samples and containment in a vacuum chamber for assessment. DESI researchers modified a mass spectrometer, which is commonly used in biological sciences, to speed and simplify the time-consuming and labor-intensive analytical process, Ifa said.

Mass spectrometry works by first turning molecules into ions, or electrically charged versions of themselves, so they have mass and can be detected and analyzed. The DESI procedure does this by positively charging water molecules by spraying a stream of water in the presence of an electric field. These charged molecules contain an extra proton and are called ions. When the charged water droplets hit the surface of the sample being tested, they transfer their extra proton to molecules in the sample, turning them into ions. The ionized molecules are then vacuumed into the mass spectrometer, where the masses of the ions are measured and the material analyzed.

"Through analysis of the abundance of certain ions and mass ratios, the contents of the sample can be identified," Cooks said. "This information can be used to precisely determine the location of cancerous tissue and borders of tumors."

In this study, researchers mapped the distribution of fatty substances called lipids in a rat brain. The team was able to create a high-resolution image with a spatial resolution of less than 500 micrometers, meaning the image distinguishes small details separated by less than 1/100th of an inch. The researchers evaluated the sample by spraying small sections of it with the charged water droplets, obtaining data for each section and then combining the data sets to create an analysis of the sample as a whole, Ifa said. Software was used to map the information and create a two-dimensional image showing the distribution and intensity of selected ions.

The team is now working on the technique to improve the image resolution and has placed an instrument in the Indiana University School of Medicine, Cooks said.

Cooks' research team has also designed and built a portable mass spectrometer using the DESI technology. It is roughly the size of a shoebox and weighs about 40 pounds, compared to around 600 pounds for a conventional mass spectrometer. The portable instrument runs on batteries and can be carried anywhere, allowing the technology to more easily be used for field applications like explosives detection.

Cooks' most recent DESI research was conducted in Purdue's Bindley Biosciences Center at Discovery Park and is associated with Purdue's Center for Sensing Science and Technology.

Funding for this research came from the Office of Naval Research and the Indianapolis company Prosolia Inc., which is commercializing DESI.

Writer: Elizabeth K. Gardner, 765/494-2081, ekgardner@purdue.edu
Sources: R. Graham Cooks, (765) 494-5263, cooks@purdue.edu
Demian Ifa, (765) 496-3356, difa@purdue.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Elizabeth K. Gardner | EurekAlert!
Further information:
http://www.purdue.edu

Further reports about: Cooks DESI IFA Purdue' Spectrometer mass spectrometer

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>