Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Images develop clinical applications for new DESI technology

09.10.2006
Purdue University researchers have created the first two-dimensional images of biological samples using a new mass spectrometry technique that furthers the technology's potential applications for the detection of diseases such as cancer.

The technology, desorption electrospray ionization, or DESI, measures characteristic chemical markers that distinguish diseased from non-diseased regions of tissue samples within a few seconds and has eliminated the need for samples to be treated with chemicals and specially contained.

This tool has a wide range of applications and could be used in the future to address many medical issues, said Graham Cooks, Purdue's Henry B. Hass Distinguished Professor of Analytical Chemistry in whose lab DESI was developed.

"This technology could be used to aid surgeons in precisely and completely removing cancerous tissue," he said. "With these images, we can see the exact location of tumor masses and can detect cancerous sites that are indistinguishable to the naked eye."

... more about:
»Cooks »DESI »IFA »Purdue' »Spectrometer »mass spectrometer

Current surgical methods rely on the trained eye of a pathologist who views stained tissue slices under a microscope to assess what tissue must be removed.

This study was the first to take the graphical data presented by DESI mass spectrometry and turn it into a two-dimensional image of the tissue, said Demian Ifa, a member of Cooks' research team.

"The ability to produce an image is a great advance," he said. "It is much more practical to have an image that can quickly and easily be interpreted. It brings the technology much closer to being ready for the clinical setting."

A paper detailing the study has been selected as a "very important paper" by the journal Angewandte Chemie and is currently posted online. Cooks, Ifa, Justin Wiseman, and Qingyu Song, all from Purdue's Department of Chemistry, authored the paper, which will be featured on the cover of the print publication. Less than 5 percent of the journal's manuscripts earn the very important paper designation, according to the journal.

Several technical papers have been published about DESI experiments since the method was announced two years ago as an alternative to traditional mass spectrometry techniques.

Conventional mass spectrometry requires chemical separations, manipulations of samples and containment in a vacuum chamber for assessment. DESI researchers modified a mass spectrometer, which is commonly used in biological sciences, to speed and simplify the time-consuming and labor-intensive analytical process, Ifa said.

Mass spectrometry works by first turning molecules into ions, or electrically charged versions of themselves, so they have mass and can be detected and analyzed. The DESI procedure does this by positively charging water molecules by spraying a stream of water in the presence of an electric field. These charged molecules contain an extra proton and are called ions. When the charged water droplets hit the surface of the sample being tested, they transfer their extra proton to molecules in the sample, turning them into ions. The ionized molecules are then vacuumed into the mass spectrometer, where the masses of the ions are measured and the material analyzed.

"Through analysis of the abundance of certain ions and mass ratios, the contents of the sample can be identified," Cooks said. "This information can be used to precisely determine the location of cancerous tissue and borders of tumors."

In this study, researchers mapped the distribution of fatty substances called lipids in a rat brain. The team was able to create a high-resolution image with a spatial resolution of less than 500 micrometers, meaning the image distinguishes small details separated by less than 1/100th of an inch. The researchers evaluated the sample by spraying small sections of it with the charged water droplets, obtaining data for each section and then combining the data sets to create an analysis of the sample as a whole, Ifa said. Software was used to map the information and create a two-dimensional image showing the distribution and intensity of selected ions.

The team is now working on the technique to improve the image resolution and has placed an instrument in the Indiana University School of Medicine, Cooks said.

Cooks' research team has also designed and built a portable mass spectrometer using the DESI technology. It is roughly the size of a shoebox and weighs about 40 pounds, compared to around 600 pounds for a conventional mass spectrometer. The portable instrument runs on batteries and can be carried anywhere, allowing the technology to more easily be used for field applications like explosives detection.

Cooks' most recent DESI research was conducted in Purdue's Bindley Biosciences Center at Discovery Park and is associated with Purdue's Center for Sensing Science and Technology.

Funding for this research came from the Office of Naval Research and the Indianapolis company Prosolia Inc., which is commercializing DESI.

Writer: Elizabeth K. Gardner, 765/494-2081, ekgardner@purdue.edu
Sources: R. Graham Cooks, (765) 494-5263, cooks@purdue.edu
Demian Ifa, (765) 496-3356, difa@purdue.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Elizabeth K. Gardner | EurekAlert!
Further information:
http://www.purdue.edu

Further reports about: Cooks DESI IFA Purdue' Spectrometer mass spectrometer

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>