Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel pathway regulates timing of brain cell development

09.10.2006
Findings may aid in understanding Alzheimer's, schizophrenia, autism

Brain formation involves the carefully timed production of different types of nerve cells by neural stem cells: neurons are produced first, then astrocytes. Making too much of one kind of cell and too little of another at a given time could lead to brain malformations. In the October 6 issue of Cell, researchers in the Neurobiology Program at Children's Hospital Boston report discovering a new molecular pathway that influences the timing of nerve-cell production.

The pathway--which acts through a novel and unexpected mechanism--inhibits production of astrocytes during the early stages of brain development, thereby favoring the production of neurons. (Astrocytes provide structural and functional support to neurons, but can also regulate their differentiation.) Children's neurobiologist Gabriel Corfas, PhD, senior investigator on the study, says the discovery could have implications for diseases such as Alzheimer's disease, schizophrenia and autism.

One key component of the pathway is a protein called erbB4 that straddles the outer membrane of the neural stem cell. Corfas's team showed that mice lacking erbB4 produced astrocytes earlier in embryonic development than normal. ErbB4 is activated by another protein called neuregulin 1 (NRG1), and then is cut in two by a third critical protein called presenilin, the researchers showed. The half of erbB4 that resides inside the cell--a protein called E4ICD--then joins with other proteins in the cell and travels to the cell nucleus. "Once in the nucleus, E4ICD represses genes that trigger astrocyte production, and thereby inhibits astrocyte formation," explains S. Pablo Sardi, PhD, a postdoctoral fellow at Children's and the study's first author.

... more about:
»Brain »Development »Timing »astrocyte »erbB4 »regulate

Previous studies have found presenilin activity to be altered in Alzheimer's disease, and that erbB4 is abundant around the plaques found in Alzheimer's patients' brains. Taken together, the evidence suggests that presenilin's role in Alzheimer's may have to do, in part, with its effects on erbB4 activity--an effect that was previously unrecognized. ErbB4 signaling also regulates neuronal function and survival, processes that have been implicated in Alzheimer's pathology, the researchers note.

"Our findings raise the intriguing possibility that defects in presenilin-mediated erbB4 signaling could be implicated in the early stages of Alzheimer's disease," Corfas says. "Further studies of erbB4 nuclear signaling could provide important insights into the causes of neurodegeneration."

In addition, the genes for both NRG1 and erbB4 have been linked to schizophrenia. Corfas speculates that premature formation of astrocytes resulting from altered functioning of these genes causes subtle malformations in the brain's circuitry. "Changes in the timing in which different neural cells are produced could lead to alterations in brain wiring," he says. "This would lead to alterations in cognitive function such as those seen in schizophrenia--which is now considered to be a developmental disorder--and potentially in other diseases such as autism."

James Newton | EurekAlert!
Further information:
http://www.childrenshospital.org/newsroom

Further reports about: Brain Development Timing astrocyte erbB4 regulate

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>