Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fruit fly study identifies gene mutation that regulates sensitivity to alcohol

06.10.2006
Researchers at the University of California, San Francisco (UCSF) have discovered a gene mutation in fruit flies that alters sensitivity to alcohol.

The findings, reported in the October 6 issue of the journal Cell, may have implications for human studies seeking to understand innate differences in people's tolerance for alcohol. The research was supported by the National Institute on Alcohol Abuse and Alcoholism (NIAAA) and the National Institute on Drug Abuse (NIDA) of the National Institutes of Health (NIH), part of the U.S. Department of Health and Human Services.

The study was authored by Adrian Rothenfluh, Ph.D., and colleagues in the laboratory of Ulrike Heberlein, Ph.D., at UCSF, in collaboration with researchers at the Ernest Gallo Clinic & Research Center. The scientists examined the behavior of fruit flies (Drosophila) exposed to alcohol. Ordinarily, at low doses of alcohol fruit flies increase their activity, while high doses have a sedative effect. However, the researchers found some fruit flies were much more resistant to alcohol sedation. These flies continued to move about much longer than typical fruit flies exposed to the same amount of alcohol. The scientists subsequently identified key differences in a particular gene associated with this behavior. The mutation also altered the flies' sensitivity to cocaine and nicotine as well. Because this gene variant affected the behavioral response to substances of abuse, the researchers dubbed it white rabbit--a reference to the title of a 1960s song about drug-induced changes.

"This study describes key molecular pathways and gene interactions that control alcohol sensitivity," said NIAAA Director Ting-Kai Li, M.D. "These significant clues about the fruit fly's behavioral response may translate into useful tools to advance the search for human genes involved in sensitivity to alcohol. Insights about sensitivity, or acute tolerance, are especially important because we know that people who are less sensitive to alcohol's impact are at greater risk for becoming alcohol dependent," he said.

... more about:
»Mutation »RhoGAP18B »alcohol »effect »sensitivity

The researchers exposed fruit flies to vaporized alcohol and monitored their behavior and motion patterns with sensitive tracking instruments. They isolated the flies that were less sensitive to alcohol's sedative effects. By breeding subsequent populations of mutant flies, the scientists identified the particular genetic mutation.

The researchers further showed that the white rabbit mutation disrupted the function of the RhoGAP18B gene. They also isolated a number of gene variants of RhoGAP18B, each of which had a distinctly different effect on the response to alcohol. Manipulating these genetic variants, the researchers generated flies with greater and lesser sensitivity to alcohol's sedative and stimulant effects.

The research team also detailed how signaling proteins encoded by the RhoGAP18B gene variants played an important role in reorganizing components of the adult fruit fly's central nervous system, which in turn affected the flies' behavior. Dr. Rothenfluh said the research team concluded that the RhoGAP18B gene is intimately involved in regulating behavioral responses to alcohol exposure.

The findings have implications for researchers seeking corresponding genes and molecular pathways in other animal models and humans. Antonio Noronha, Ph.D., director of NIAAA's Division of Neuroscience and Behavior, said, "If we can characterize similar genetic differences and neurobehavioral responses that underlie acute tolerance in humans, that could potentially provide new targets for the development of drugs to treat alcohol dependence."

Gregory Roa | EurekAlert!
Further information:
http://www.niaaa.nih.gov
http://www.nih.gov

Further reports about: Mutation RhoGAP18B alcohol effect sensitivity

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>