Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hail to the hornworts: New plant family tree sheds light on evolution of life cycles

06.10.2006
In the history of life on earth, one intriguing mystery is how plants made the transition from water to land and then went on to diversify into the array of vegetation we see today, from simple mosses and liverworts to towering redwoods.

A research team led by University of Michigan evolutionary biologist Yin-Long Qiu has new findings that help resolve long-debated questions about the origin and evolution of land plants. The work will be published online this week in the Proceedings of the National Academy of Sciences.

Two major steps kicked off the chain of events that helped land plants prosper, forming the basis for modern land-based ecosystems and fundamentally altering the course of evolution of life on earth, said Qiu. The first step was the colonization of land by descendents of aquatic plants known as charophyte algae. That event opened up a vast new world where the sun's intensity was undiminished by passage through water and where carbon dioxide—another essential ingredient for plant life—was abundant.

The second event was a key change in plant life cycles. Plants exhibit a phenomenon known as alternation of generations, in which two alternating forms with different amounts of DNA make up a complete life cycle. One form, known as a sporophyte, produces spores, which grow into individuals of the other form, called gametophytes. Gametophytes produce gametes—eggs and sperm—which unite to form a fertilized egg capable of becoming a new sporophyte, thus completing a life cycle. While all plants exhibit alternation of generations, some spend most of their life cycle as sporophytes, and others spend more time in the gametophyte phase.

"Early in the history of plant evolution, a shift occurred," said Qiu, an assistant professor of ecology and evolutionary biology. "If you look at the so-called 'lower' plants such as algae, liverworts and mosses, they spend most of their life cycle as gametophytes. But if you look at plants like ferns, pines and flowering plants, they spend most of their time as sporophytes. Geneticists, developmental biologists and evolutionists have been wondering how the switch happened and have put forth two competing hypotheses."

For each hypothesis, scientists have come up with an evolutionary scheme showing how different plant lineages should be related to explain the generation shift. Studies over the last century have produced conflicting results on relationships among early land plant lineages, leaving unanswered the most critical question of how the shift in alternation of generations occurred. Qiu's group used three complementary sets of genetic data, involving more than 700 gene sequences, to resolve relationships among the four major lineages of land plants: liverworts, mosses, hornworts and vascular plants (which include ferns, pines and flowering plants). Their analysis showed that liverworts—tiny green, ribbon-like plants often found along river banks—represent the first lineage that diverged from other land plants when charophyte algae first came onto land, and an obscure group called hornworts, often found in abandoned corn fields, represents the progenitors of the vascular plants.

"Basically we captured a few major events that happened in the first few tens of millions of years of land plant evolution," Qiu said. The results make sense in light of the plants' life cycle patterns. Charophyte algae, liverworts and mosses spend most of the cycle in a free-living gametophyte phase; the sporophyte is a small, short-lived organism that lives on the gametophyte. Vascular plants, on the other hand, spend most of their time as free-living sporophytes, with small, short-lived, gametophytes that often live on the sporophytes. Hornworts may hold a clue to understanding how this shift happened, as they spend most of their life cycle in the gametophyte phase, but their sporophytes---unlike those of liverworts and mosses—show a tendency to become free-living.

Understanding evolutionary relationships among plant groups is crucial to understanding their biology, just as understanding relationships among primates advances our knowledge of human behavior, anatomy and physiology, Qiu said.

"As humans, we're always interested in knowing where we came from and why we are different from other primates," Qiu said. "Now that we know, from phylogenetic analyses, that our closest relative is the chimpanzee, we can compare the chimpanzee genome with our own genome and compare the chimpanzee brain with our own brain and compare chimpanzee behavior with human behavior.

But this all assumes we know the chimpanzee is our brother. What if we didn't know? Understanding evolutionary history really is the foundation of biology, and with today's emphasis on biofuels and medically important plants, it should be clear how important it is to learn the evolutionary history of all the organisms on our planet."

Qiu collaborated on the project with 20 other researchers from the University of Michigan; the University of Massachusetts, Amherst; the Chinese Academy of Sciences; Universitat Bonn in Germany; the University of Chicago; Southern Illinois University; the University of Akron in Ohio; Freie Universitat Berlin in Germany; Dresden University of Technology in Germany and Harvard University. The U.S. National Science Foundation, the National Natural Science Foundation of China and the Michigan Society of Fellows provided funding.

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.umich.edu

Further reports about: Algae Evolutionary Qiu gametophyte hornworts lineage liverworts mosses sporophyte

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>