Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hail to the hornworts: New plant family tree sheds light on evolution of life cycles

06.10.2006
In the history of life on earth, one intriguing mystery is how plants made the transition from water to land and then went on to diversify into the array of vegetation we see today, from simple mosses and liverworts to towering redwoods.

A research team led by University of Michigan evolutionary biologist Yin-Long Qiu has new findings that help resolve long-debated questions about the origin and evolution of land plants. The work will be published online this week in the Proceedings of the National Academy of Sciences.

Two major steps kicked off the chain of events that helped land plants prosper, forming the basis for modern land-based ecosystems and fundamentally altering the course of evolution of life on earth, said Qiu. The first step was the colonization of land by descendents of aquatic plants known as charophyte algae. That event opened up a vast new world where the sun's intensity was undiminished by passage through water and where carbon dioxide—another essential ingredient for plant life—was abundant.

The second event was a key change in plant life cycles. Plants exhibit a phenomenon known as alternation of generations, in which two alternating forms with different amounts of DNA make up a complete life cycle. One form, known as a sporophyte, produces spores, which grow into individuals of the other form, called gametophytes. Gametophytes produce gametes—eggs and sperm—which unite to form a fertilized egg capable of becoming a new sporophyte, thus completing a life cycle. While all plants exhibit alternation of generations, some spend most of their life cycle as sporophytes, and others spend more time in the gametophyte phase.

"Early in the history of plant evolution, a shift occurred," said Qiu, an assistant professor of ecology and evolutionary biology. "If you look at the so-called 'lower' plants such as algae, liverworts and mosses, they spend most of their life cycle as gametophytes. But if you look at plants like ferns, pines and flowering plants, they spend most of their time as sporophytes. Geneticists, developmental biologists and evolutionists have been wondering how the switch happened and have put forth two competing hypotheses."

For each hypothesis, scientists have come up with an evolutionary scheme showing how different plant lineages should be related to explain the generation shift. Studies over the last century have produced conflicting results on relationships among early land plant lineages, leaving unanswered the most critical question of how the shift in alternation of generations occurred. Qiu's group used three complementary sets of genetic data, involving more than 700 gene sequences, to resolve relationships among the four major lineages of land plants: liverworts, mosses, hornworts and vascular plants (which include ferns, pines and flowering plants). Their analysis showed that liverworts—tiny green, ribbon-like plants often found along river banks—represent the first lineage that diverged from other land plants when charophyte algae first came onto land, and an obscure group called hornworts, often found in abandoned corn fields, represents the progenitors of the vascular plants.

"Basically we captured a few major events that happened in the first few tens of millions of years of land plant evolution," Qiu said. The results make sense in light of the plants' life cycle patterns. Charophyte algae, liverworts and mosses spend most of the cycle in a free-living gametophyte phase; the sporophyte is a small, short-lived organism that lives on the gametophyte. Vascular plants, on the other hand, spend most of their time as free-living sporophytes, with small, short-lived, gametophytes that often live on the sporophytes. Hornworts may hold a clue to understanding how this shift happened, as they spend most of their life cycle in the gametophyte phase, but their sporophytes---unlike those of liverworts and mosses—show a tendency to become free-living.

Understanding evolutionary relationships among plant groups is crucial to understanding their biology, just as understanding relationships among primates advances our knowledge of human behavior, anatomy and physiology, Qiu said.

"As humans, we're always interested in knowing where we came from and why we are different from other primates," Qiu said. "Now that we know, from phylogenetic analyses, that our closest relative is the chimpanzee, we can compare the chimpanzee genome with our own genome and compare the chimpanzee brain with our own brain and compare chimpanzee behavior with human behavior.

But this all assumes we know the chimpanzee is our brother. What if we didn't know? Understanding evolutionary history really is the foundation of biology, and with today's emphasis on biofuels and medically important plants, it should be clear how important it is to learn the evolutionary history of all the organisms on our planet."

Qiu collaborated on the project with 20 other researchers from the University of Michigan; the University of Massachusetts, Amherst; the Chinese Academy of Sciences; Universitat Bonn in Germany; the University of Chicago; Southern Illinois University; the University of Akron in Ohio; Freie Universitat Berlin in Germany; Dresden University of Technology in Germany and Harvard University. The U.S. National Science Foundation, the National Natural Science Foundation of China and the Michigan Society of Fellows provided funding.

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.umich.edu

Further reports about: Algae Evolutionary Qiu gametophyte hornworts lineage liverworts mosses sporophyte

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>