Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Investigator seeks to uncover roots of DNA’s ‘sweet’ secret

DNA's simple and elegant structure — the “twisted ladder,” with sugar-phosphate chains making up the “rails” and oxygen- and nitrogen-containing chemical “rungs” tenuously uniting the two halves — seems to be the work of an accomplished sculptor.

Yet the graceful, sinuous profile of the DNA double helix is the result of random chemical reactions in a simmering, primordial stew.

Just how nature arrived at this molecule and its sister molecule, RNA, remains one of the greatest — and potentially unsolvable — scientific mysteries.

But Vanderbilt biochemist Martin Egli, Ph.D., isn't content to simply study these molecules as they are. He wants to know why they are the way they are.

... more about:
»DNA »Egli »RNA »homo-DNA »six-carbon »structure

“These molecules are the result of evolution,” said Egli, professor of Biochemistry. “Somehow they have been shaped and optimized for a particular purpose.”

“For a chemist, it makes sense to analyze the origin of these molecules.”

One particular curiosity: how did DNA and RNA come to incorporate five-carbon sugars into their “backbone” when six-carbon sugars, like glucose, may have been more common? Egli has been searching for the answer to that question for the past 13 years.

Recently, Egli and colleagues solved a structure that divulges DNA's “sweet” secret. In a recent issue of the Journal of the American Chemical Society, Egli and colleagues report the X-ray crystal structure of homo-DNA, an artificial analog of DNA in which the usual five-carbon sugar has been replaced with a six-carbon sugar.

By exchanging the sugars that make up the DNA backbone, researchers can make and test plausible “alternatives” to DNA — alternatives that nature may have tried out before arriving at the final structure. These alternative structures can then reveal why DNA's genetic system is more favorable than the other possible forms.

“If you can change the molecules chemically or functionally, you can see what is so particular about them, why are they optimal, why are they better than others,” he said.

Although homo-DNA was first synthesized in 1992, a detailed picture of the molecule's structure had been lacking. Egli's high resolution structure is now able to provide answers to some of the lingering questions about why DNA is made the way it is.

While the homo-DNA structure shows a number of similarities with DNA, it is much more stable than DNA. However, it has a more haphazard appearance than normal DNA, looking more like a “slowly writhing ribbon” than the tightly twisted ladder of DNA.

“The reason that DNA was 'picked' is not because it's thermodynamically extremely stable,” Egli said. “There are others — including homo-DNA — that are actually superior in that regard.”

Egli's structure also shows that homo-DNA has more flexibility in how the bases (rungs of the ladder) bind. The bases in normal DNA adhere to a somewhat strict binding scheme — guanine (G) binds with cytosine (C) and adenine (A) binds with thymine (T). In this “Watson-Crick” base pairing, the G:C bonds are much stronger than A:T or any other bonds.

“In homo-DNA, the Watson-Crick base pairing rules are changed,” Egli said. “For example, G:C is similar to G:G or A:A, so you have a much more versatile pairing system in homo-DNA. Therefore, the nature of the sugar in the backbone affects the pairing rules.”

But despite homo-DNA's apparent versatility in base pairing and its thermodynamic stability, other features of the molecule's architecture probably preclude it from being a viable genetic system

For example, it cannot pair with other nucleic acids — unlike DNA and RNA which can and must pair with each other. Also the steep angle, or inclination, between the sugar backbone and the bases of homo-DNA requires that the pairing strands align strictly in an antiparallel fashion — unlike DNA which can adopt a parallel orientation. Finally, the irregular spaces between the “rungs” prevent homo-DNA from taking on the uniform structure DNA uses to store genetic information.

The findings suggest that fully hydroxylated six-carbon sugars probably would not have produced a stable base-pairing system capable of carrying genetic information as efficiently as DNA.

“The structure now provides insight of a chemical nature that (the six-carbon sugar) is just too 'bulky.' It has too many atoms,” Egli said.

The new insights provided by this structure lie at the heart of the most fundamental of scientific inquiries — the origin of life on Earth. If the pieces of DNA and RNA hadn't come together just so, life as we know it would not exist.

Although Egli's structure has ruled out six-carbon sugars as viable alternatives for the sugar backbone of DNA, the existence of a plethora of sugars — as well as alternative bases — make for an almost endless number of possibilities from which nature selected the winning DNA combination.

“Homo-DNA is just one alternative system. There are hundreds of sugars, as many as you can think of. It will be almost impossible to look at all of them,” Egli said.

“But the big red herring of this work could be that nature never went through these other sugars. Maybe it just hit on gold (these five-carbon sugars) very early and took off from there.”

The research was funded by the National Institutes of Health and the American Chemical Society Petroleum Research Fund.

Melissa Marino | EurekAlert!
Further information:

Further reports about: DNA Egli RNA homo-DNA six-carbon structure

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>