Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Clemson researchers develop nanotechnology

Picture a spider web coated with sugar. But instead of luring in unsuspecting creatures, this spider web pulls in deadly anthrax spores, rendering them harmless.

Clemson University chemist Ya-Ping Sun and his research team have developed such a countermeasure strategy to weaponized anthrax, a biological agent used by a terrorist or terrorists that killed five Americans in 2001. The Clemson team’s findings are published online in the “Journal of the American Chemical Society.”

“For anthrax to be effective, it has to be made into a fine powder that can easily enter the lungs when inhaled. That is what makes it lethal,” said Sun. “What we have done is come up with an agent that clings to the anthrax spores to make their inhalation into the lungs difficult.”

Anthrax spores are covered with carbohydrates, or simple sugars, that are used to communicate with or attract other biological species. The Clemson team used carbon nanotubes as a platform or scaffolding for displaying sugar molecules that would attract the anthrax spores. Carbon nanotubes are hollow tubes made of carbon atoms. Typically one-hundred thousandth the thickness of a single human hair, nanotubes are formed from intensely heated carbon. When sugar coated, the carbon nanotubes bind with the anthrax spores, creating clusters that are too large to be inhaled –– stopping their infection and destruction.

... more about:
»Anthrax »Carbon »Nanotubes »spores

Sun said a similar approach using sugar-coated carbon nanotubes to stop the spread of E. coli bacteria was tested successfully in 2004. He sees this new method potentially as a way for first responders to contain anthrax in an office or mailroom setting using a water-based gel, foam or aerosol spray, and he thinks it has potential application on the battlefield in larger quantities.

With Sun on the Clemson research team were Haifang Wang, who visited from Peking University in Beijing, China; Lingrong Gu, Yi Lin, Fushen Lu, Mohammed J. Meziani, Pengju G. Luo, Wei Wang and Li Cao.

The National Science Foundation and the United States Department of Agriculture funded the study.

Ya-Ping Sun | EurekAlert!
Further information:

Further reports about: Anthrax Carbon Nanotubes spores

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>