Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Compound Eyes, Evolutionary Ties

05.10.2006
Biologists at the University of California, San Diego have discovered that the presence of a key protein in the compound eyes of the fruit fly (which glow at center due to a fluorescent protein) allows the formation of distinct light gathering units in each of its 800 unit eyes, an evolutionary change to an “open system” that enabled insects to make significant improvements in visual acuity and angular sensitivity. In contrast, beetles (shown surrounding the fruit fly), bees and many mosquito species have the light-gathering units fused together into a “closed system.”

In a paper published in this week's early online edition of the journal Nature, the scientists report that one of three proteins needed to form these light gathering units is present in the visual system of fruit flies, house flies and other insects with open eye systems, but conspicuously absent in beetles, bees and other species with closed systems. The researchers showed that the loss of this protein, called “spacemaker,” can convert the eyes of fruitflies—which normally have open eye systems—into a closed one. In contrast, the introduction of spacemaker into eyes with a closed system transformed them into an open one.

Charles Darwin was so enamored by the intricate complexity of the eye that he wondered how it could have evolved. “These results help illustrate the beauty and power of evolution and show how ‘little steps’—like the presence of a single structural protein—can so spectacularly account for major changes in form and function,” said Charles Zuker, a professor of biology and neurosciences at UCSD and a Howard Hughes Medical Institute investigator, who headed the research team.

Andrew Zelhof, a postdoctoral researcher working in Zuker's laboratory, was the first author of the study, which also involved Robert Hardy and Ann Becker of UCSD. The research was supported by the National Eye Institute of the National Institutes of Health and the Howard Hughes Medical Institute.

Kim McDonald | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: Eye Protein

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>