Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery in the evolution of the immune system absorbing cells

04.10.2006
The UAB has taken part in a research project that has just made a discovery that questions one of the paradigms of vertebrate immunology: that phagocytosis (the ability to "ingest" and destroy microbes) is performed mainly by "professional" phagocytic cells (macrophages, monocytes, granulocytes), while antibody-producing cells (B cells) are not capable of phagocytosis. The discovery affects fish and amphibians and will make it possible to produce a new type of vaccine for fish in the near future.

Led by Dr J Oriol Sunyer, of the Faculty of Veterinary Medicine at the University of Pennsylvania, and formed by researchers from Philadelphia, St Louis and Idaho (USA) and by Dr Lluís Tort of the Universitat Autònoma de Barcelona, the group has been able to show that B cells in fish as well as in amphibians are capable of strong phagocytosis both in in vivo and in vitro experiments. The work has been published in Nature Immunology, the most prestigious journal worldwide in the field of immunology.

According to Dr Sunyer, "this is important so that we can understand not only how the immune systems of fish and amphibians work but also the origin and composition of the immune systems of humans and mammals". The work concludes that there is an evolutionary relationship between macrophages and cells by which both cell types derive from a common, ancestral cell with functional properties of both cells. So though the B cells of lower vertebrates (fish and amphibians) are still capable of phagocytis while they are producing antibodies, the B cells of higher vertebrates are no longer capable of phagocytis. The latter specialise almost exclusively in functions of the adaptive immune response.

It is most probable that the less-elaborated, restrictive adaptive immune response of fish and amphibians makes the preservation of phagocytosis an evolutionary advantage to B cells in their defence against pathogens. One cannot forget that fish have had a significant evolutionary success, since nearly 50% of vertebrate species belong to this group and they are constantly in contact with a vast multitude of microorganisms in the water. According to Dr Sunyer, "From a practical perspective, this discovery will be used in the near future to produce a new design of vaccines for fish in order to stimulate phagocytosis in antibodies for B cells, increasing the effectiveness of the vaccine".

The study of comparative biology remains an important source of scientific knowledge. Several years ago, the same researchers demonstrated the great versatility and power of the innate immune response of the complement system in lower vertebrates, whereas mammals have developed greater effectiveness and specialisation in the adaptive mechanism of antibodies.

Octavi López Coronado | alfa
Further information:
http://www.uab.es

Further reports about: B cells amphibians immune immune system phagocytosis

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>