Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tidy motor protein folds away when the job is done

04.10.2006
A discovery by University of Leeds researchers has revealed how a motor protein shuts itself down and becomes compact when it has no cargo to carry. It then goes in search of more cargo, perhaps carried by other passing proteins.

The discovery is significant, because the protein, called myosin 5, is part of a large family of motor proteins involved in a wide range of important bodily processes, including hearing, muscle contraction, digestion and neural transmission – the delivery of messages from the brain to different parts of the body.

“Some fatal seizures can be caused by a breakdown in myosin 5 activity,” says Dr Peter Knight of the Leeds research team. “By increasing our understanding of the process, we can start to address the problems caused when it doesn’t work. Of course there are still many questions that need answering, but we now have a model on which to base potential bio-nanotechnology molecular systems that could replicate the process to deliver molecules of our choosing – such as targeted drug therapies – to specific sites.”

The new discovery builds on the existing work of the Molecular Contractility Group of the University’s Astbury Centre for Structural Molecular Biology, who together with colleagues from the National Institutes of Health in the US, first showed how myosin 5 ‘walks’ to its destination.

... more about:
»Myosin »Protein

Myosin 5 molecules have two elongated heads attached to one end of a tail. Each head comprises a motor domain and a lever. At the other end of the tail is a pair of cargo-binding domains. In cells, myosin 5 is able to transport cargo because the two motor domains bind alternately to a filament called F-actin and take rapid strides along it by tilting the levers, like a pair of legs walking.

However, the filament it travels on is a one-way track, so myosin can only travel in one direction on its own. But once the cargo has been delivered – whether it is neurotransmitter chemicals to make a muscle contract or a package of pigments for a strand of hair – until now no-one knew what happened next.

Dr Kavitha Thirumurugan of the Leeds team commented: “It now seems that once its job is completed, myosin 5 folds up and the cargo binding domain does double duty by shutting down the motor, preventing myosin 5 from aimlessly wandering around. How it finds its next cargo we don’t yet know, but maybe it is picked up and carried there by proteins travelling in the other direction to start the cycle again. It’s a bit like a clockwork train network.”

Abigail Chard | alfa
Further information:
http://www.fbs.leeds.ac.uk

Further reports about: Myosin Protein

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>