Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tidy motor protein folds away when the job is done

04.10.2006
A discovery by University of Leeds researchers has revealed how a motor protein shuts itself down and becomes compact when it has no cargo to carry. It then goes in search of more cargo, perhaps carried by other passing proteins.

The discovery is significant, because the protein, called myosin 5, is part of a large family of motor proteins involved in a wide range of important bodily processes, including hearing, muscle contraction, digestion and neural transmission – the delivery of messages from the brain to different parts of the body.

“Some fatal seizures can be caused by a breakdown in myosin 5 activity,” says Dr Peter Knight of the Leeds research team. “By increasing our understanding of the process, we can start to address the problems caused when it doesn’t work. Of course there are still many questions that need answering, but we now have a model on which to base potential bio-nanotechnology molecular systems that could replicate the process to deliver molecules of our choosing – such as targeted drug therapies – to specific sites.”

The new discovery builds on the existing work of the Molecular Contractility Group of the University’s Astbury Centre for Structural Molecular Biology, who together with colleagues from the National Institutes of Health in the US, first showed how myosin 5 ‘walks’ to its destination.

... more about:
»Myosin »Protein

Myosin 5 molecules have two elongated heads attached to one end of a tail. Each head comprises a motor domain and a lever. At the other end of the tail is a pair of cargo-binding domains. In cells, myosin 5 is able to transport cargo because the two motor domains bind alternately to a filament called F-actin and take rapid strides along it by tilting the levers, like a pair of legs walking.

However, the filament it travels on is a one-way track, so myosin can only travel in one direction on its own. But once the cargo has been delivered – whether it is neurotransmitter chemicals to make a muscle contract or a package of pigments for a strand of hair – until now no-one knew what happened next.

Dr Kavitha Thirumurugan of the Leeds team commented: “It now seems that once its job is completed, myosin 5 folds up and the cargo binding domain does double duty by shutting down the motor, preventing myosin 5 from aimlessly wandering around. How it finds its next cargo we don’t yet know, but maybe it is picked up and carried there by proteins travelling in the other direction to start the cycle again. It’s a bit like a clockwork train network.”

Abigail Chard | alfa
Further information:
http://www.fbs.leeds.ac.uk

Further reports about: Myosin Protein

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>