Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tidy motor protein folds away when the job is done

04.10.2006
A discovery by University of Leeds researchers has revealed how a motor protein shuts itself down and becomes compact when it has no cargo to carry. It then goes in search of more cargo, perhaps carried by other passing proteins.

The discovery is significant, because the protein, called myosin 5, is part of a large family of motor proteins involved in a wide range of important bodily processes, including hearing, muscle contraction, digestion and neural transmission – the delivery of messages from the brain to different parts of the body.

“Some fatal seizures can be caused by a breakdown in myosin 5 activity,” says Dr Peter Knight of the Leeds research team. “By increasing our understanding of the process, we can start to address the problems caused when it doesn’t work. Of course there are still many questions that need answering, but we now have a model on which to base potential bio-nanotechnology molecular systems that could replicate the process to deliver molecules of our choosing – such as targeted drug therapies – to specific sites.”

The new discovery builds on the existing work of the Molecular Contractility Group of the University’s Astbury Centre for Structural Molecular Biology, who together with colleagues from the National Institutes of Health in the US, first showed how myosin 5 ‘walks’ to its destination.

... more about:
»Myosin »Protein

Myosin 5 molecules have two elongated heads attached to one end of a tail. Each head comprises a motor domain and a lever. At the other end of the tail is a pair of cargo-binding domains. In cells, myosin 5 is able to transport cargo because the two motor domains bind alternately to a filament called F-actin and take rapid strides along it by tilting the levers, like a pair of legs walking.

However, the filament it travels on is a one-way track, so myosin can only travel in one direction on its own. But once the cargo has been delivered – whether it is neurotransmitter chemicals to make a muscle contract or a package of pigments for a strand of hair – until now no-one knew what happened next.

Dr Kavitha Thirumurugan of the Leeds team commented: “It now seems that once its job is completed, myosin 5 folds up and the cargo binding domain does double duty by shutting down the motor, preventing myosin 5 from aimlessly wandering around. How it finds its next cargo we don’t yet know, but maybe it is picked up and carried there by proteins travelling in the other direction to start the cycle again. It’s a bit like a clockwork train network.”

Abigail Chard | alfa
Further information:
http://www.fbs.leeds.ac.uk

Further reports about: Myosin Protein

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>