Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tidy motor protein folds away when the job is done

04.10.2006
A discovery by University of Leeds researchers has revealed how a motor protein shuts itself down and becomes compact when it has no cargo to carry. It then goes in search of more cargo, perhaps carried by other passing proteins.

The discovery is significant, because the protein, called myosin 5, is part of a large family of motor proteins involved in a wide range of important bodily processes, including hearing, muscle contraction, digestion and neural transmission – the delivery of messages from the brain to different parts of the body.

“Some fatal seizures can be caused by a breakdown in myosin 5 activity,” says Dr Peter Knight of the Leeds research team. “By increasing our understanding of the process, we can start to address the problems caused when it doesn’t work. Of course there are still many questions that need answering, but we now have a model on which to base potential bio-nanotechnology molecular systems that could replicate the process to deliver molecules of our choosing – such as targeted drug therapies – to specific sites.”

The new discovery builds on the existing work of the Molecular Contractility Group of the University’s Astbury Centre for Structural Molecular Biology, who together with colleagues from the National Institutes of Health in the US, first showed how myosin 5 ‘walks’ to its destination.

... more about:
»Myosin »Protein

Myosin 5 molecules have two elongated heads attached to one end of a tail. Each head comprises a motor domain and a lever. At the other end of the tail is a pair of cargo-binding domains. In cells, myosin 5 is able to transport cargo because the two motor domains bind alternately to a filament called F-actin and take rapid strides along it by tilting the levers, like a pair of legs walking.

However, the filament it travels on is a one-way track, so myosin can only travel in one direction on its own. But once the cargo has been delivered – whether it is neurotransmitter chemicals to make a muscle contract or a package of pigments for a strand of hair – until now no-one knew what happened next.

Dr Kavitha Thirumurugan of the Leeds team commented: “It now seems that once its job is completed, myosin 5 folds up and the cargo binding domain does double duty by shutting down the motor, preventing myosin 5 from aimlessly wandering around. How it finds its next cargo we don’t yet know, but maybe it is picked up and carried there by proteins travelling in the other direction to start the cycle again. It’s a bit like a clockwork train network.”

Abigail Chard | alfa
Further information:
http://www.fbs.leeds.ac.uk

Further reports about: Myosin Protein

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>