Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pioneering research to discover how a gene normally responsible for growth in unborn babies, ...

04.10.2006
...is linked to certain cancers, is being carried out by a leading scientist in Cambridge.

Dr Adele Murrell has been awarded a grant from AICR (the Association for International Cancer Research) to study the strange behaviour of a gene called IGF2.

She explains: “We know that if this gene is over-active in the embryo, it results in overgrowth and can cause a rare but distressing syndrome that can lead to certain childhood cancers. Over-activity of the gene has also been reported in many adult cancers, including breast and bowel cancer.

“ Normally, we inherit two copies of our genes, one from our mother and the other from our father. Some of our genes, including IGF2, have the ability to remember their origin. We call this ‘imprinting.’ In the developing embryo, it is only the paternal IGF2 gene – the one from the father – that is active. However, it is the maternal IGF2 gene that can sometimes become active in adult cells and lead to the formation of a cancer.”

... more about:
»IGF2 »Murrell »cause

Scientists have discovered that imprinting is caused by subtle chemical changes to the structure of the DNA or the proteins associated with it. Now, with AICR support, Dr Murrell will investigate further proteins involved with the imprinting of the IFG2 gene to find out how this system is involved when this gene causes cancer.

Dr Mark Matfield, AICR’s scientific adviser believes the work may have significant implications for treating the disease in the future. “Imprinting is a way of turning specific genes on or off. Since problems with gene structure or activity are the fundamental cause of cancer, turning those ‘rogue’ genes off could be the basis of a new method of treatment.”

Derek Napier, AICR's Chief Executive says the grant awarded to Dr Murrell has been given in line with the charity's policy of funding the most exciting and novel approaches to research worldwide. " We believe it important to fund work that pushes the boundaries and Dr Murrell and her team are charged with tackling one of the greatest scientific challenges of all.”

Susan Osborne | alfa
Further information:
http://www.aicr.org.uk

Further reports about: IGF2 Murrell cause

More articles from Life Sciences:

nachricht Oestrogen regulates pathological changes of bones via bone lining cells
28.07.2017 | Veterinärmedizinische Universität Wien

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>