Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research heralds dynamic way to speed up drug design

29.09.2006
In a breakthrough that could revolutionise drug design for a whole range of diseases, researchers at the University of Leeds believe they’ve discovered a way to reduce the costly and time-consuming search for new drug molecules.

In a paper published this week in Angewandte Chemie, Professor Steve Homans from Leeds’ Faculty of Biological Sciences explains his method for getting exactly the right molecule first time, by looking not just at the physical shape required to fit the target protein but also at the complex dynamics of the interaction.

Almost everything in the body – including diseases – is a result of a protein binding with another molecule, known as a ligand. Most drug treatments work by blocking this process with another molecule, which takes the place of the natural ligand. Because the binding process is still only partly understood, drug companies currently have to search through millions of possible candidates to find the right ‘fit’, a process which is both time-consuming and costly.

Professor Homans explains: “In the past, scientists have tended to look at the protein ligand interaction like a lock and key – as if the protein is a fixed shape into which the ligand fits. In reality, it’s more like a hand and glove, where you can’t see the real shape of the glove until the hand is inside it. Proteins are very dynamic and the movement that takes place during the interaction with the ligand is an important factor in the binding process.”

... more about:
»Design »Dynamic »Ligand »factor

“Another key factor is the action of the water molecules in the solution which surrounds the protein. The problem in drug design is knowing to what extent all these factors are influencing the binding process.”

For the first time, Professor Homans’ team have found a way to put a number on how important these different factors are to a protein interaction. They believe that – if their method holds true for all proteins – it will be possible to compute these figures to identify a ligand that is a perfect fit. Ideally, they want to find or create one which will bind more tightly to the protein than its natural counterpart and so act as an effective treatment by fully blocking the target interaction.

The research was done using a multidisciplinary approach including nuclear magnetic resonance (NMR) and protein crystallography. From the NMR data, the team were able to create a computer simulation of the dynamic protein interaction. Professor Homans now plans to test this process using a real target protein for disease – HIV.

“Scientists have known for many years that protein, ligand and water all play a part in the protein interaction, but there has always been intense debate about the contribution each makes. We believe we’ve finally answered that question and opened up a potentially cheaper and more effective avenue for drug design,” he said.

Abigail Chard | alfa
Further information:
http://reporter.leeds.ac.uk/press_releases/current/drug_design.htm

Further reports about: Design Dynamic Ligand factor

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>