Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research heralds dynamic way to speed up drug design

29.09.2006
In a breakthrough that could revolutionise drug design for a whole range of diseases, researchers at the University of Leeds believe they’ve discovered a way to reduce the costly and time-consuming search for new drug molecules.

In a paper published this week in Angewandte Chemie, Professor Steve Homans from Leeds’ Faculty of Biological Sciences explains his method for getting exactly the right molecule first time, by looking not just at the physical shape required to fit the target protein but also at the complex dynamics of the interaction.

Almost everything in the body – including diseases – is a result of a protein binding with another molecule, known as a ligand. Most drug treatments work by blocking this process with another molecule, which takes the place of the natural ligand. Because the binding process is still only partly understood, drug companies currently have to search through millions of possible candidates to find the right ‘fit’, a process which is both time-consuming and costly.

Professor Homans explains: “In the past, scientists have tended to look at the protein ligand interaction like a lock and key – as if the protein is a fixed shape into which the ligand fits. In reality, it’s more like a hand and glove, where you can’t see the real shape of the glove until the hand is inside it. Proteins are very dynamic and the movement that takes place during the interaction with the ligand is an important factor in the binding process.”

... more about:
»Design »Dynamic »Ligand »factor

“Another key factor is the action of the water molecules in the solution which surrounds the protein. The problem in drug design is knowing to what extent all these factors are influencing the binding process.”

For the first time, Professor Homans’ team have found a way to put a number on how important these different factors are to a protein interaction. They believe that – if their method holds true for all proteins – it will be possible to compute these figures to identify a ligand that is a perfect fit. Ideally, they want to find or create one which will bind more tightly to the protein than its natural counterpart and so act as an effective treatment by fully blocking the target interaction.

The research was done using a multidisciplinary approach including nuclear magnetic resonance (NMR) and protein crystallography. From the NMR data, the team were able to create a computer simulation of the dynamic protein interaction. Professor Homans now plans to test this process using a real target protein for disease – HIV.

“Scientists have known for many years that protein, ligand and water all play a part in the protein interaction, but there has always been intense debate about the contribution each makes. We believe we’ve finally answered that question and opened up a potentially cheaper and more effective avenue for drug design,” he said.

Abigail Chard | alfa
Further information:
http://reporter.leeds.ac.uk/press_releases/current/drug_design.htm

Further reports about: Design Dynamic Ligand factor

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>