Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to follow proteins’ interaction inside the cells; a major step for the study of Parkinson’s and Alzheimer’s disease

29.09.2006
For the first time scientists have succeed in developing a method that enables them to follow protein interactions directly inside cells.

The discovery, now published in the "FASEB Journal" has crucial implications for the study and treatment of those neurodegenerative illnesses - such as Parkinson’s, prion or Alzheimer’s diseases - which are known to result from aberrant protein interactions and deposits. In fact, the new technique, which the researchers test by studying the protein believed to be behind Parkinson’s disease, shows important potential not only to understand the mechanisms behind this type of diseases but also allows to observe, directly in the cells affected, the action of potential new treatments.

Parkinson’s disease (PD) is a progressive neurodegenerative disease characterised by increasing motor problems that can render the patient totally dependent of others for everyday tasks. The illness is believed to result from the loss of specific neural cells in an area in the brain - called substantia nigra - involved in motor function. These specific neuronal cells produce dopamine, a neurotransmitter used for the communication between the different parts of the brain involved in coordination and movement, and their death leads to interruption of the nervous signal and, ultimately, to the motor problems observed in PD patients.

Many neurodegenerative diseases, including PD, result from incorrectly folded proteins - all proteins have a specific shape/folding associated with their normal function – that either by becoming toxic, or by getting clumped together into insoluble aggregates, provoke the death of the brain cells in their surroundings. In the case of PD, the protein responsible for the pathology is believed to be alpha-synuclein, a brain protein of unknown function found in high quantities around the brain lesions of the subtantia nigra. Recently it has also been found that mutations or multiplications of the alpha-synuclein gene are responsible for some forms of Parkinson’s disease.

PD treatment and prevention is a medical priority in developed countries where the disease affects a striking 3% of the population above 65 years old, raising crucial financial issues especially as in these societies expectancy of life is steadily increasing and with it will also disease cases.

However, until now the understanding of this type of neurodegenerative diseases has been a very slow process due also to the lack of processes that could allow the observation of proteins directly inside the cell. But the development, by Jochen Klucken, Tiago F. Outeiro, Bradley T. Hyman and colleagues from the Massachusetts General Hospital, US and the University of Regensburg, Germany, of a technique called “Fluorescence Lifetime Imaging Microscopy” might change radically this. The new method consists in tagging the two ends of a protein with coloured dyes, which emit different energy specific wavelengths that can be read by a machine. The logic behind the technique is that the closer the two ends of the protein are (and so the two dyes), the higher is the interference between the two emitted wavelengths, allowing to infer if the protein has an open shape, is enrolled within itself or clotted together with other tagged proteins. This is crucial information as the same protein folded differently can have totally different effects/functions within the cell (it can even become toxic).

Using the new technique Klucken and colleagues studied alpha-synuclein in human cells and discovered a new aberrant interaction between different molecules of alpha-synuclein, which is probably involved in some forms of PD.

Even more interesting, the researchers were able to see inside the cell how the chaperone protein Hsp70 - chaperone proteins are molecules whose function is to assist other proteins achieving a proper folding – reverts alpha-synuclein toxicity.

In fact, although no cure for PD has been found so far, very promising work in animals and cells in laboratory has found that Hsp70 is capable of eliminating alpha-synuclein toxicity and so (theoretically at least) might help control the disease.

What the researchers now found was that Hsp70 opens alpha-synuclein misfolded structure allowing it to then revert to its normal (benign) shape. This result not only explains the mechanism behind Hsp70 protective effect, but proves that Fluorescence Lifetime Imaging Microscopy can be used to test new therapies in neurodegenerative diseases by directly accessing their effect inside the cells what is exciting news for both researchers and patients.

Piece researched and written by: Catarina Amorim (catarina.amorim@linacre.ox.ac.uk)

Catarina Amorim | alfa
Further information:
http://www.fasebj.org/

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>