Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How nature tinkers with the cellular clock

28.09.2006
Many solutions have evolved to control the timing of the same biological process

The life of a cell is all about growing and dividing at the right time. That is why the cell cycle is one of the most tightly regulated cellular processes. A control system with several layers adjusts when key components of the cell cycle machinery are produced, activated and degraded to make sure that the schedule is kept.

These layers of control work differently and are usually studied separately, but researchers at the European Molecular Biology Laboratory (EMBL) and the Technical University of Denmark (DTU) have now discovered that they change in a highly coordinated fashion during evolution. The study, which will be published in this week’s online issue of Nature, also reveals that although most components of the cell cycle have been conserved over one billion years, the temporal regulation of this process has evolved remarkably fast.

The cell cycle is so fundamental for a cell that its machinery has been almost entirely conserved through evolution. Crucial components are made only at specific times to ensure that each machine is active only during the right phase of the cycle.

Comparing cell cycle genes that are conserved between humans, yeasts and thale cress, Peer Bork and colleagues at EMBL and DTU found that while many genes in each organism are expressed only at specific times of the cell cycle, it is not the same genes that are temporally regulated in each species.

“Regulating processes by controlling the time at which genes are expressed is a strategy that is conserved,” says Peer Bork, joint coordinator of EMBL’s Structural and Computational Biology Unit, “but details of which genes are regulated in this way and the exact timing of their expression have changed a lot throughout evolution. What is really surprising is the speed at which these regulatory systems evolve. We are talking about roughly 100 million years for a big change. On the timescale of evolution this is incredibly fast for such a central process.”

To have a safety net when temporal control at the gene level fails, cells also regulate the activity of cell cycle proteins directly, switching them on and off and modifying them at particular sites. A closer look at these proteins revealed that changes in the control of gene expression often go together with changes in the regulation of the corresponding protein.

“To our surprise, we found that these two different mechanisms of temporal control evolve together in a coordinated fashion,” says Søren Brunak, Professor at DTU. “This double layer of control seems so important that evolution has conserved it despite dramatic changes in the regulation of each mechanism.”

The new insights gained have broad implications. The principles discovered might govern also the control of other temporally regulated systems like embryonic development. The fast evolution of temporal regulation also raises the question in how far general conclusions about regulatory systems can be drawn from studying simple model organisms like yeast or fruit flies.

Anna-Lynn Wegener | EMBL
Further information:
http://www.embl.de

Further reports about: Evolution Regulation cell cycle regulated temporal

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>