Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy study takes aim at prostate cancer

27.09.2006
Researchers at Baylor College of Medicine (BCM) are hoping a new gene therapy that takes a gene called RTVP-1 directly into the prostate tumor will prove effective in preventing recurrence of the disease.

The first phase of the study is designed to test the safety of the treatment and determine the proper dosage of gene, said Dr. Dov Kadmon, professor of urology at BCM. It will be carried out in the department of urology at BCM as well as at Ben Taub General Hospital, The Methodist Hospital and Michael E. DeBakey Veterans Affairs Medical Center.

"We are treating patients who are scheduled for a prostatectomy (prostate removal) but who also have a high risk that their disease will recur (or come back)," said Kadmon. "The operation itself is highly successful in eradicating local tumors (in the prostate)."

The design of the study is simple, said Kadmon.

... more about:
»BCM »Kadmon »RTVP-1 »prostate »urology

"One injection into the prostate that should take no more than 10 minutes, although patients will be monitored in a special unit of the hospital for 23 hours to make sure there are no side effects. After that, they come to the unit for a check-up once a week."

After about 30 days, the subjects undergo their surgery, which has already been scheduled, he said. He said the hope is that the gene therapy will reduce the risk that cancer will recur at or near the site of the tumor as well as in distant points in the body.

"We hope that by generating a systemic immune response, we are enabling the body to destroy prostate cancer cells that have moved elsewhere," he said. Kadmon and his colleagues plan to test six different doses of the gene.

The gene therapy involves attaching an inactivated adenovirus (related to viruses that cause respiratory infections) to the RTVP-1 gene. As the virus infects the tumor cells, it will introduce the gene into the cells as well. (RTVP stands for related to testes-specific, vespid and pathogenesis proteins.) The RTVP-1 gene was isolated in the laboratory of Dr. Timothy Thompson, also a professor of urology at BCM.

As Thompson began to study the gene, he found that it was a target for a tumor suppressor gene called p53, which is a major controller of cell activity in prostate and other cancers. He found that the human form of the gene is normally present in benign prostate or low grade tumor but is lost as the tumors become more malignant. "This characterized it as a tumor suppressor gene that is active in the prostate," said Kadmon.

When the gene is introduced into the tumors of animals lacking RTVP-1, it suppresses the formation of new blood vessels. It causes what is known as "apoptosis" or programmed cell death in prostate cancer cells and also activates the immune system to fight cancer cells.

"We are proceeding carefully, step-by-step," said Kadmon. He said they do not think the study presents a significant risk.

They will inject the virus-gene compound directly into the prostate. While there is a risk of infection with the injection, he said patients will receive antibiotics. Most patients will have some fever after the injection, but it can probably be handled with Tylenol.

Doctors will monitor patients after their surgery to determine the effect of the gene therapy on their disease.

Funding for the study, which will include as many as 36 subjects, comes from the National Cancer Institute and the Baylor Special Program for Research Excellence in Prostate Cancer that is NCI-funded.

Others involved in the study include Thompson, Dr. Brian J. Miles, BCM professor of urology; Dr. Adrian Gee, BCM professor of medicine and pediatrics in the section of hematology oncology; Dr. Thomas M. Wheeler, BCM professor of pathology and urology; Dr. Gustavo E. Ayala, BCM professor of pathology and urology; Dr. Martha P. Mims, BCM assistant professor of medicine in the section of hematology-oncology; and Dr. Teresa G. Hayes, BCM assistant professor of medicine, section of hematology-oncology.

Patients qualified to participate in this study are individuals diagnosed with high grade prostate cancer (Gleason grade 7 or higher), or who have a blood PSA level of 10ng/ml or higher and are contemplating surgery (radical prostatectomy). To register for the study or to obtain further information, patients may call 713-798-4895.

Gracie Gutierrez | EurekAlert!
Further information:
http://www.bcm.edu

Further reports about: BCM Kadmon RTVP-1 prostate urology

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>